تاثیر دوره‌‌های گرسنگی کوتاه مدت و تغذیه مجدد بر شاخص‌‌های رشد و فاکتور‌‌های خونی در بچه فیل ماهی (Huso huso)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیلات و آبزیان، دانشکده منابع طبیعی، واحد قائمشهر، دانشگاه آزاد اسلامی، قائمشهر، ایران

2 گروه دامپزشکی، واحد بابل، دانشگاه آزاد اسلامی، بابل، ایران

چکیده

تحقیق حاضر در راستای شناخت عملکرد رشد و فاکتور­های خونی به ­دنبال اعمال گرسنگی کوتاه مدت در فیل­ ماهی با میانگین وزن اولیه 5/32±34/58 مورد بررسی قرار گرفت. 4 تیمار­شامل شاهد (F) روزانه 4 بار در حد سیری غذادهی شدند، تیمار SRF1 با چهار دوره متناوب گرسنگی دو روزه و غذا­دهی 8 روزه پس از هر دوره گرسنگی, تیمار SRF2 با دو دوره متناوب گرسنگی چهار روزه و غذادهی 16 روزه پس از هر گرسنگی و تیمار SRF3 با یک دوره گرسنگی 8 روزه و غذادهی 32 روزه به مدت 40 روز مورد آزمایش قرار گرفتند. نتایج نشان داد که عملکرد رشدی در تیمارهای آزمایشی به ­طور معنی داری تحت تاثیر روند غذادهی قرار گرفته است (0/05>P). تیمار­های SRF1 و SRF2 نسبت به تیمار SRF3 به­ طور معنی ­داری افزایش وزن و نرخ رشد ویژه بالاتری نشان دادند (0/05>p). در شاخص­ کبدی، شاخص دستگاه گوارش و فاکتور وضعیت تفاوت معنی­ داری مشاهده نشده است (0/05<P). اثر گرسنگی و غذادهی مجدد بر پارامتر­های خونی معنی­ دار بود (0/05>P). به ­طوری که با اعمال گرسنگی 8 روزه (SRF3) سطح گلبول قرمز به ­طور معنی­ داری نسبت به سایر تیمار­ها افزایش یافت با توجه به نتایج به دست آمده در پایان دوره آزمایش می ­توان چنین استنباط کرد که فیل­ ماهی توانایی سازگاری با دوره ­های کوتاه ­تر گرسنگی را داشت به­ طوری که تیمارهای 2 و 4 روز گرسنگی دارای رشد جبرانی کامل بودند. اما تیمار 8 روز گرسنگی (SRF3) وزن نهایی کم تری نسبت به تیمار شاهد داشتند که نشان دهنده رشد جبرانی نسبی در آن­ ها می ­باشد.
 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of Short-term Period Starvation and Re-feeding on growth indices and blood factors in Sub-yearling Beluga (Huso huso)

نویسندگان [English]

  • Soheila Naghshpour 1
  • Abbas Bozorgnia 1
  • Mehdi Hossenifard 2
  • Sayed Roholah Javadian 1
1 Department of Fisheries, Faculty of Natural Resources Sciences, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
2 Department of Veterinary, Babol Branch, Islamic Azad University, Babol, Iran
چکیده [English]

The present study was performed to identify growth performance and blood factors in Huso hoso (34.58±5.32) after short term starvation. The treatments consisted of 4 groups in which the control treatment group (F) fed 4 times daily satiety, the SRF1 treatment with four alternate two-day starvation and 8-day feeding after each starvation period. SRF2 with two alternate four-day fasting and 16-day fasting after each starvation and the SRF3 treatment with an 8-day fasting and 32-day fasting period were tested for 40 days. The results showed that growth performance in experimental treatments was significantly affected by feeding process (p<0.05). SRF1 and SRF2 treatments showed significantly higher weight gain and specific growth rate than SRF3 treatment (p<0.05). There was no significant difference in liver index, gastrointestinal index and status factor (p>0.05). The effect of starvation and malnutrition on blood parameters was significant (p<0.05). With 8-day starvation (SRF3), the level of red blood cells increased significantly compared to other treatments. According to the results obtained at the end of the experimental period, it can be concluded that the fish were able to adapt to shorter periods of starvation so that the 2 and 4-day starvation treatments had full compensatory growth. But the 8-day starvation treatment (SRF3) had less final weight than the control treatment, which shows a relative compensatory growth in them.

کلیدواژه‌ها [English]

  • Huso huso
  • Compensatory growth
  • Blood indices
  • growth performance
  1. عشوری، ق.؛ یاوری، و.؛ بهمنی، م.؛ یزدانی، م.ع.؛ کاظمی، ر.؛ مرشدی، و. و فتح ­اللهی، م.، 1396. پاسخ‌‌های فیزیولوژیکی و مورفولوژیکی بچه‌‌ماهیان سیبری دوره‌‌های گرسنگی کوتاه مدت و تغذیه مجدد: اثرات رشد جبرانی. مجله علوم و فنون. شماره 1، صفحات 1 تا 13.
  2. عشوری، ق.؛ یاوری، و.؛ بهمنی، م.؛ یزدانی ­ساداتی،م.ع.؛ کاظمی، ر.ا.؛ مرشدی، و. و فتح ­اللهی، م.، 1394. پاسخ های فیزیولوژیکی و مرفولوژیکی بچه تاس­ ماهیان سیبری Acipenser baerii (Brandt, 1896) به دوره ­های گرسنگی کوتاه مدت و تغذیه مجدد: اثرات رشد جبرانی. مجله علمی علوم و فنون دریایی. دوره 14، شماره 1، صفحات 21 تا 32.
  3. مرشدی، و.؛ کوچنین، پ.؛ یزدانی، م.ع.؛ پورعلی، ح.ر. عشوری، ق. و عضدی، م.، 1393. مقایسه تغییرات در هموگلوبینف هماتوکریت و تعداد گلبول‌‌های سفید و قرمز در طول محرومیت غذایی بچه ماهیان سیبری و بچه فیل‌‌ماهی پرورشی. مجله زیست‌‌شناسی ایران. شماره 2، صفحات 282 تا 290.
  4. یارمحمدی، م.؛ پورکاظمی، م.؛ کاظمی، ر.ا.؛ حسن­ زاده ­صابر، م. و یزدانی، م.ع.، 1394. تأثیر دوره­ های گرسنگی بر شاخص­ های خونی استرس در تاس­ ماهی ایرانی (Acipenser persicus). فصلنامه علوم و فنون شیلات. دوره 4، شماره 4، صفحات 135 تا
  5. Abdel-Tawwab, M.; Abdel-Rahman, A.M. and Ismael, N.E.M., 2008. Evaluation of commercial live bakers’ yeast, Saccharomyces cerevisiae as a growth and immunity promoter for Fry Nile tilapia, Oreochromis niloticus (L.) challenged in situ with Aeromonas hydrophila. Aquaculture. Vol. 280, pp: 185-189.
  6. Aikins, F.K.; Hung, S.S.; Liu, W. and Li, H., 1992. Growth, lipogenesis and liver composition of juvenile white sturgeon fed different levels of D-glucose. Aquaculture. Vol. 105, No. 1, pp: 61-72.
  7. Ali, M.; Nicieza, A. and Wootton, R.J., 2003. Compensatory growth in fishes: a response to growth depression. Fish and Fisheries. Vol. 4, pp: 147-190.
  8. Ashouri, Gh.; Yavari, V.; Bahmani, M.; Yazdani, M.A.; Kazemi, R.; Morshedi, V. and Fatollahi, M., 2013. The effect of short-term starvation on some physiological and morphological parameters in juvenile Siberian sturgeon, Acipenser baerii (Actinopterygii: Acipenseriformes: Acipenseridae). Acta Ichthyologica Piscatoria. 43, No. 2, pp: 145-150.
  9. Bahrekazemi, M. and Asadi, M., 2018. Effects of dietary prebiotic Mito (MHF-Y) and starvation on the compensatory growth, survival, and hematological parameters in Common carp (Cyprinus carpio L, 1758). Iranian Journal of Aquatic Animal Health. Vol. 4, No. 1, pp: 82-94.
  10. Bavčević, L.; Klanjšček, T.; Karamarko, V.; Aničić, I. and Legović, T., 2010. Compensatory Growth in Gilthead Sea Bream (Sparus Aurata) Compensates Weight, but Not Length. Vol. 301, pp: 57-63.
  11. Bayir, A.; Sirkecioglu, N.; Bayir, M.; Haliloglu, H.I.; Kocaman, E.M. and Aras, N.M., 2011. Metabolic composition and ration size on key enzyme activities of glycolysis–gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). British Journal of Nutrition. 82, No. 3, pp: 223-232.
  12. Bélanger, F.; Blier, P.U. and Dutil, J.D. 2002. Digestive capacity and compensatory growth in Atlantic cod (Gadus morhua). Fish Physiology and Vol. 26, pp: 121-128.
  13. Benfey, T.J. and Biron, M., 2000. Acute stress response in triploid rainbow trout (Oncorhynchus mykiss) and brook trout (SalÍelinus fontinalis). Aquaculture. Vol. 184, pp: 167-176.
  14. Blaxhall, P.C. and Daisley, K.W., 1973. Routine haematological methods for use with fish blood. Journal of fish biology.  5, No. 6, pp: 771-781.
  15. Chebanov, M. and Billard, R., 2001. The culture of sturgeons in Russia: production of juveniles for stocking and meat for human consumption. Aquatic Living Resources.  14, No. 6, pp: 375-381.
  16. Davis, K.B. and Gaylord, T.G., 2011. Effect of fasting on body composition and responses to stress in sunshine bass. comparative and biochemical physiology part A. Vol. 158, pp: 30-36.
  17. De Santis, C. and Jerry, D.R., 2011. Differential tissue regulation of myostatin genes in the teleost fish Lates calcarifer in response to fasting. Evidence for functional differentiation. Molecular and Cellular endocrinology. Vol. 335, pp: 158-165.
  18. Falahatkar, B.; Foadian, A.; Abbasalizadeh, A. and Tolouei Gilani, M.H., 2007. Effects of starvation and feeding strategies on growth performance in sub yearling great sturgeon (Huso huso). Aquaculture pp: 24-27.
  19. FAO. 2016. Agriculture Organization, 2014. Livestock Primary. Food and Agriculture Organization of the United Nations.
  20. Hayward, R.S.; Noltie, D.B. and Wang, N., 1997. Use of compensatory growth to double hybrid sunfish growth rates. Transactions of the American Fisheries Vol. 126, pp: 316-322.
  21. Heide, A.; Foss, A.; Stefansson, S.O.; Mayer, I.; Norberg, B.; Roth, B.; Jenssen, M.D.; Nortvedt, R. and Imsland, A.K., 2006. Compensatory growth and fillet composition in juvenile Atlantic halibut: Effects of short term starvation periods and subsequent feeding. Aquaculture. Vol. 261, pp: 109-117.
  22. Hung, S.S.O.; Liu, W.; Li, H.B.; Storebakken, T. and Cui, Y.B., 1997. Effects of starvation on some morphological and biochemical parameters in white sturgeon (Acipenser transmontanus). Aquaculture. Vol. 151, pp: 357-363.
  23. Jobling, M., 1980. Effects of Starvation on Proximate Chemical Composition and Energy Utilization of Plaice (Pleuronectes Platessa L). Journal of Fish Biology. Vol. 17, pp: 325-334.
  24. Jobling, M.; Koskela, J. and Winberg, S., 1999. Feeding and growth of whitefish fed restricted and abundant rations: influences on growth heterogeneity and brain serotonergitic activity. Fish Biology. Vol. 54, pp: 437-449.
  25. Johansson-Sjobeck, M.L.; Dave, J.; Larsson, A.; Lewander, K. and Lidman, U., 1974. Metabolic and hematological effects of starvation in the European eel, Anguilla anguilla. Hematology. Comp. Biochem. Physiol. Vol. 52A, pp: 431-434
  26. ‏‏Kenari, A.A.; Mozanzadeh, M.T. and Pourgholam, R., 2011. Effects of total fish oil replacement to vegetable oils at two dietary lipid levels on the growth, body composition, haemato‐immunological and serum biochemical parameters in Caspian brown trout (Salmo trutta caspius). Aquaculture Research.  42, No. 8, pp: 1131-1144.
  27. Kenari, A.A.; Mahmoudi, N.; Soltani, M. and Abediankenari, S., 2013. Dietary nucleotide supplements influence the growth, haemato‐immunological parameters and stress responses in endangered Caspian brown trout (Salmo trutta caspius). Aquaculture Nutrition.  19, No. 1, pp: 54-63.
  28. Larsson, Å. and Lewander, K., 1973. Metabolic effects of starvation in the eel Anguilla anguillaComp. Biochem. Physiol. Part A Mol. Integr. Physiol. Vol. 44A, pp: 367-374.
  29. Lee, R.G.; Foerster, J.; Jukens, J.; Paraskevas, F.; Greer, J.P. and Rodgers, G.M., 1998. Wintrobe's- Clinical Hematology. 10th edn. Lippincott Williams & Wilkins, New York.
  30. Liu, W.; Wei, Q.W.; Wen, H.; Jiang, M.; Wu, F. and Shi, Y., 2011. Compensatory growth in juvenile Chinese sturgeon (Acipenser sinensis): effects of starvation and subsequent feeding on growth and body composition. Applied Ichthyology. Vol. 27, pp: 749-754.
  31. Mendez, G. and Wieser, W., 1993. Metabolic responses to food deprivation and refeeding in juveniles of Rutilus rutilus. Environmental Biology of Fishes. Vol. 36, pp: 73-81 
  32. Metón, I.; Mediavilla, D.; Caseras, A.; Cantó, E.; Fernández, F. and Baanante, I.V., 1999. Effect of diet composition and ration size on key enzyme activities of glycolysis–gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata). British Journal of Nutrition.  82, No. 3, pp: 223-232.
  33. Mohanta, K.N.; Mohanty, S.N.; Jena, J.K. and Sahu, N.P., 2008. Protein requirement of silver barb, Puntius gonionotusAquaculture Nutrition, Vol. 14, No. 2, pp: 143-152.
  34. Mohanta, K.N.; Rath, S.C.; Nayak, K.C.; Pradhan, C.; Mohanty, T.K. and Giri, S.S., 2016. Effect of restricted feeding and refeeding on compensatory growth, nutrient utilization and gain, production performance and whole body composition of carp cultured in earthen pond. Aquaculture Nutrition. Online Version of Record published before inclusion in an issue. pp: 1-10.
  35. Mohseni, M; Ozorio, R.O.A.; Pourkazemi, M. and Bai, S.C., 2008. Effects of dietary Lcarnitine supplements on growth and body in beluga sturgeon (Huso huso) juveniles. Journal of Applied Ichthyology. 24, pp: 646-649.
  36. Natt, M.P. and Herrick, C.A., 1952. A new blood diluent for counting the erythrocytes and leucocytes of the chicken. Poult Sci. Vol. 31, No. 4, pp: 735-738.
  37. Navarro, I. and Gutierrez J., 1995. Fasting and starvation. In: Hochachka P.W. and Mommsen T.P. (eds.), Biochemistry and Molecular Biology of Fishes. Elsevier Science. New York. 4, pp: 394-433.
  38. Navarro, I.; Gutiérrez, J. and Planas, J., 1995. Estimates of fish glucagon by heterologous radioimmunoassay: antibody selection & cross-reactivities. Comparative Biochemistry & Physiology Part C: Pharmacology, Toxicology & Endocrinology.  110, No. 3, pp: 313-319.
  39. Nikki, J.; Pirhonen, J.; Jobling, M. and Karjalainen, J., 2004. Compensatory growth in juvenile rainbow trout (Oncorhynchus mykiss) held individually. Aquaculture. Vol. 235, pp: 285-296.
  40. Nogueira, N.; Cordeiro, N.; Canada, P.; Cuze Silva, P. and Ozório R.O.A., 2011. Separate and combined of Amphiprion melanops. Fish Biology. 55, pp: 1273-1289.
  41. Rehulka, J., 2000. Influence of Astaxanthin on growth rate, condition, and some blood indices of rainbow trout, Oncorhynchus mykiss. Aquaculture.  190, No. 1-2, pp: 27-47.
  42. Rossi, S.; Cazenave, J.; Bacchetta, C. and Campana, M., 2015. Physiological and metabolic adjustments of Hoplosternum littorale (Teleostei, Callichthyidae) during starvation. Ecological Indicators. Vol. 56, pp: 161-170. DOI:10.1016/j.ecolind.2015.04.001
  43. Russell, N.R. and Wootton, R.J., 1992. Satiation digestive tract evacuation and return of appetite in the European minnow (Phoxinus phoxinus) following short periods of pre-prandial starvation. Environmental Biology of Fishes. Vol. 38, pp:
  44. Smirnov, L.J., 1965. Blood indices of the burbot during prolonged total fasting and subsequent Dokl. Acad. Sci. U.S.S.R. Biol. Sci. Sect. Vol. 160, pp: 107-109.
  45. Tian, X. and Qin, G., 2003. A Single Phase of Food Deprivation Provoked Compensatory Growth in Barramundi (Lates calcarifer). Aquaculture. Vol. 224, pp: 169-179.
  46. Tian, X.; Fang, J. and Dong, S., 2010. Effects of starvation and recovery on the growth, metabolism and energy budget of juvenile tongue sole (Cynoglossus semilaevis). Aquaculture. Vol. 310, pp: 122-129.
  47. Wang, Y.; Cui, Y.; Yang, Y. and Cai, F., 2000. Compensatory growth in hybrtilapia (Oreochromis mosambicus × O. niloticus) reared in seawater. Aquaculture. Vol. 189, pp: 101-108.