Effect of silver nanoparticles on olfactory feeding behavior of Acipenser persicus

Document Type : Animal environment

Authors

1 Department of Fisheries, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Department of Ichthyology, Faculty of Biology, Moscow State University, Leninskie Gory, Moscow, Russia

Abstract

Olfaction is one of the fundamental senses to detect odors from long distances in sturgeons, and it plays an important role in feeding behavior and orientation fish. This sense can be a reliable criteria to investigate the effect of pollutants on aquatic organisms. Therefore, the main objective of this study was to evaluate effects of silver nanoparticles on olfactory feeding behavior of Persian sturgeon. This behavior was investigated following exposure to 0.01, 0.005 and 0.001 mg L-1 AgNPs for 7 days (each group with 3 replicates) and 6 amino acids were used to evaluate the olfactory behavior. During the course of the experiment, solution containing amino acids was introduced into the aquarium for 3 min. Then the number of fish and their behavior was counted every30 sec after the start of each trial. The results showed that the concentration of 0.01 mg L-1 AgNPs significantly reduced the olfactory attractiveness of alanine, glycine and leucine amino acids. Also, olfactory behavior responses were significantly reduced only at a concentration of 0.01 mg / L. but responses to the repellant amino acids (tyrosine, aspartic acid and glutamic acid) were not significantly different in none of the concentrations of silver nanoparticles.

Keywords


  1. Asharani, P.V.; Kah Mun, G.L.; Hande, M.P. and Valiyaveettil, S., 2009. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. Vol. 3, pp: 279-290.
  2. Baatrup, E., 1991. Structural and functional effects of heavy metals on the nervous system, including sense organs, of fish. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology. Vol. 100, pp: 253-257.
  3. Bilberg, K.; Doving, K.B.; Beedholm, K. and Baatrup, E., 2011. Silver nanoparticles disrupt olfaction in Crucian carp (Carassius carassius) and Eurasian perch (Perca fluviatilis). Aquatic toxicology. Vol. 104, pp:145-152.
  4. Billard, R. and Lecointre, G., 2000. Biology and conservation of sturgeon and paddlefish. Reviews in Fish Biology and Fisheries. Vol. 10, pp: 355-392.
  5. Dumont, H.J., 1998. The Caspian Lake: history, biota, structure, and function. Limnology and Oceanography. Vol. 43, pp: 44-52.
  6. Goli, S.; Jafari, V.; Ghorbani, R. and Kasumyan, A., 2015. Taste preferences and taste thresholds to classical taste substances in the carnivorous fish, Rutilus frisii kutum (Teleostei: Cyprinidae). Physiology and behavior. Vol. 140, pp: 111-117.
  7. Griffin, S.; Masood, M.; Nasim, M.; Sarfraz, M.; Ebokaiwe, A.; Schafer, K.H.; Keck. C. and Jacob, C., 2018. Natural nanoparticles: A particular matter inspired by nature. Antioxidants. Vol. 7, pp: 1-21.
  8. Griffitt, R.J.; Brown-Peterson, N.J.; Savin, D.A.; Manning, C.S.; Boube, I.; Ryan, R.A. and Brouwer, M., 2012. Effects of chronic nanoparticulate silver exposure to adult and juvenile sheep shead minnows (Cyprinodon variegatus). Environmental Toxicology and Chemistry. Vol. 31, pp: 160-167.
  9. Griffitt, R.J.; Lavelle, C.M.; Kane, A.S.; Denslow, N.D. and Barber, D.S., 2013. Chronic Nanoparticulate Silver Exposure Results in Tissue Accumulation and Transcriptomic Changes in Zebrafish. Aquatic Toxicology. Vol. 130, pp: 192-200.
  10. Hara, T.J., 2012. Fishchemoreception. Vol. 6. Springer Science and Business Media.
  11. Hyun, J.S.; Lee, B.S.; Ryu, H.Y.; Sung, J.H.; Chung, K.H. and Yu, I.J., 2008. Effects of repeated silver nanoparticles exposure on the histological structure and mucins of nasal respiratory mucosa in rats. Toxicology. Letter. Vol. 182, pp: 24-28.
  12. Johari, S.A.; Kalbassi, M.R.; Yu, I.J. and Lee, J.H., 2015. Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. Comparative Clinical Pathology. Vol. 24, pp: 995-1007.
  13. Kahru, A. and Dubourguier, H.C., 2010. From ecotoxicology to nanoecotoxicology. Toxicology. Vol. 269, pp:  105-119.
  14. Kashiwada, S.; Ariza, M.E.; Kawaguchi, T.; Nakagame, Y.; Jayasinghe, B.S.; Gartner, K. and Chandler, G.T., 2012. Silver nanocolloids disrupt medaka embryogenesis through vital gene expressions. Environmentalscience and technology. Vol. 46, pp: 6278-6287.
  15. Kasumyan, A.O., 2001. Effects of chemical pollutants on foraging behavior and sensitivity of fish to food stimuli. Journal of Ichthyology. Vol. 41, pp: 76-87.
  16. Kasumyan, A.O., 2002. Sturgeon food searching behaviour evoked by chemical stimuli: a reliable sensory mechanism. Journal of Applied Ichthyology. Vol. 18, pp: 685-690.
  17. Klaprat, D.A.; Evans, R.E. and Hara, T.J., 1992. Environmental Contaminants and Chemoreception in Fishes. In Fish Chemoreception. Chapman and Hall, London, UK. pp: 321-341.
  18. Lari, E.; Abtahi, B.; Hashtroudi, M.S.; Mohaddes, E. and Doving, K.B., 2015. The effect of sublethal concentrations of the water‐soluble fraction of crude oil on the chemosensory function of Caspian roach (Rutilus rutilus). Environmental toxicology and chemistry. Vol. 34, pp: 1826-1832.
  19. McShan, D.; Ray, P.C. and Yu, H., 2014. Molecular toxicity mechanism of nanosilver. Journal of food and drug analysis. Vol. 22, pp: 116-127.
  20. Nair, P.M.G. and Choi, J., 2011. Characterization of a ribosomal protein L15 cDNA from Chironomus riparius (Diptera; Chironomidae): transcriptional regulation by cadmium and silver nanoparticles. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. Vol. 159, pp: 157-162.
  21. Olsen, K.H., 2010. Effects of Pollutants on Olfactory Mediated Behaviors in Fish and Crustaceans. In: Breithaupt, T. and Thiel, M., (eds) Chemical Communication in Crustaceans. Springer, New York, NY. pp: 507-529.
  22.  Pourkazemi, M., 2006. Caspian Sea sturgeon conservation and fisheries: past present and future. Journal of Applied Ichthyology. Vol. 22, pp: 12-16.
  23. Salari Joo, H.; Kalbassi, M.R.; Yu, I.J.; Lee, J.H. and Johari, S.A., 2013. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity. Aquatic Toxicology. Vol. 140, pp: 398-406.
  24. Shamushaki, V.A.J.; Abtahi, B. and Kasumyan, A.O., 2011. Olfactory and taste attractiveness of free amino acids for Persian sturgeon juveniles, Acipenser persicus: a comparison with other acipenserids. Journal of Applied Ichthyology. Vol. 27, pp: 241-245.
  25. Steele, C.W.; Owens, D.W. and Scarfe, A.D., 1990. Attraction of Zebrafish (Brachydanio rerio) to Alanine and its Suppression by Copper. Fish Biology. Vol. 36, pp: 341-353.
  26. Tierney, K.B.; Baldwin, D.H.; Hara, T.J.; Ross, P.S.; Scholz, N.L. and Kennedy, C.J., 2010. Olfactory toxicity in fishes. Aquatic toxicology. Vol. 96, pp: 2-26.
  27. Viswaprakash, N.; Dennis, J.C.; Globa, L.; Pustovyy, O.; Josephson, E.M.; Kanju, P.; Morrison, E.E. and Vodyanoy, V.J., 2009. Enhancement of odorant-induced responses in olfactory receptor neurons by zinc nanoparticles. Chemical Senses. Vol. 34, pp: 547-557.
  28. Volkoff, H. and Peter, R.E., 2006. Feeding behavior of fish and its control. Zebrafish. Vol. 3, pp: 131-140.
  29. Wise, J.P.; Goodale, B.C.; Wise, S.S.; Craig, G.A.; Pongan, A.F.; Walter, R.B. and Spalding, M.J., 2010. Silver nanospheres are cytotoxic and genotoxic to fish cellsAquatic Toxicology. Vol. 1, No. 97, pp:34-41.
  30. Woodrow Wilson Database. 2014. Nanotechnology consumer product inventory. http://www. nanotechproject.org/cpi/about/ analysis/ accessed at 10/14/2014.
  31. Wu, Y.; Zhou, Q.; Li, H.; Liu, W.; Wang, T. and Jiang, G., 2010. Effects of silver nanoparticles on the development and histopathology biomarkers of Japanese medaka (Oryzias latipes) using the partial-life test. Aquatic Toxicology. Vol. 100, pp: 160-167.