Modeling the effects of climate change on the geographic distribution of the wild sheep in Lorestan Province, Iran

Document Type : Animal environment

Authors

1 Department of Fisheries and Environmental Sciences, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, Iran

2 Department of Nature Engineering, Faculty of Natural Resources and Earth Sciences, Shahrekord University, Shahrekord, Iran

3 Faculty of Natural Resources, Sari Agricultural Sciences and Natural Resources University, Sari, Iran

4 Department of Environmental Sciences, Faculty of Natural Resources and Earth Sciences, University of Kashan, Kashan, Iran

Abstract

Habitat loss is the main threat to the endangered populations of wildlife and anthropogenic climate change is expected to exacerbate this. Here, we identify suitable habitats of wild sheep in Lorestan Province and how these habitats are affected by the climate change scenarios, in order to address conservation and management efforts. The ensemble modeling based on six species distribution models (SDMs) was used to predict current and future distributions, in response to the changing climate. Our models predicted that 7.4% of the 28,294 km2 study area is currently suitable habitat for the species. Land cover, temperature seasonality (bio4), distance to spring, human footprint and distance to escape terrain made the highest contribution (80%) to the distribution model performance. Findings show that about 62.14 (RCP4.5) to 76.97% (RCP8.5) of present suitable habitat would be lost by 2050 due to climate change under four future representative concentration pathways within BCC-CSM1-1 general circulation model. In contrast, habitat gains observed for models were 5.89 (RCP8.5) to 17.01% (RCP4.5). Our findings could provide useful information for conservation planning to protect and restore wild sheep populations.

Keywords


  1. Allouche, O.; Tsoar, A. and Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology. Vol. 43, No. 6, pp: 1223-1232.
  2. Aryal, A.; Brunton, D. and Raubenheimer, D., 2013. Habitat assessment for the translocation of blue sheep to maintain a viable snow leopard population in the Mt Everest Region, Nepal. Zoology and Ecology. Vol. 23, No. 1, pp: 66-82.
  3. Ashrafzadeh, M.R.; Naghipour, A.A.; Haidarian, M. and Khorozyan, I., 2019a. Modeling the response of an endangered flagship predator to climate change in Iran. Mammal Research. Vol.  64, No. 1, pp: 1-13.
  4. Ashrafzadeh, M.R.; Naghipour, A.A.; Haidarian, M.; Kusza, S. and Pilliod, D.S., 2019b. Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Global Ecology and Conservation. Vol. 19, pp: e00637.
  5. Bashari, H. and Hemami, M.R., 2013. A predictive diagnostic model for wild sheep (Ovis orientalis) habitat suitability in Iran. Journal for Nature Conservation. Vol. 21, No. 5, pp: 319-325.
  6. Cardenas, A.S.; Cardenas, I.G.; Dmaz, S.; Tessaro P.G. and Gallina, S., 2001. The variables of physical habitat Cirelli, M. T. (2002). Legal trends in wildlife management. In FAO legislative study. Selection by the desert bighorn sheep (Ovis canadensis weemsi) in the Sierra del Mechudo, Baja California Sur, Mexico" Journal of Arid Environments. Vol. 49, pp: 357-374.
  7. Chen, I.C.; Hill, J.K.; Ohlemüller, R.; Roy, D.B. and Thomas, C.D., 2011. Rapid range shifts of species associated with high levels of climate warming. Science. Vol. 333, No. 6045, pp: 1024-1026.
  8. Doswald, N.; Willis, S.G.; Collingham, Y.C.; Pain, D.J.; Green, R.E. and Huntley, B., 2009. Potential impacts of climatic change on the breeding and nonbreeding ranges and migration distance of European Sylvia warblers. Journal of Biogeography. Vol. 36, pp: 1194-1208.
  9. Ebrahimi, A.; Farashi, A. and Rashki, A., 2017. Habitat suitability of Persian leopard (Panthera pardus saxicolor) in Iran in future. Environmental earth sciences. Vol. 76, No. 20, pp: 697.
  10. Favilli, F.; Hoffmann, C.; Ravazzoli, E. and Streifeneder, T., 2013.  BioRegio Carpathians: Advanced tools and methodologies adopted GIS Model Design for deriving ecological corridors. European Academy of Bolzano: Institute for Regional Development and Location Management. pp: 1-54.
  11. Giuseppe, P. and Luigi, M., 2016. Combining multiple tools to provide realistic potential distributions for the mouflon in Sardinia: species distribution models, spatial pattern analysis and circuit theory. Hystrix, the Italian Journal of Mammalogy. pp: 1-7.
  12. Granados, A. and Brodie, J.F., 2016. Persistence of tropical Asian ungulates in the face of hunting and climate change. In: Sankaran, M., Ahrestani, F. (Eds.), The Ecology of Large Herbivores in South and Southeast Asia. Springer-Verlag, Berlin, Germany. pp: 223-235.
  13. Haynes, M.A.; Kung, K.S.; Brandt, J.S.; Yongping, Y.; Waller, D.M., 2014. Accelerated climate change and its potential impact on yak herding livelihoods in the eastern Tibetan plateau. Climatic Change. Vol. 123, pp: 147-160.
  14. Hilty, J.A.; Lidicker, W.Z. and Merenlender, A., 2012. Corridor ecology: the science and practice of linking landscapes for biodiversity conservation. Island Press. 344 p.
  15. Hole, D.G.; Willis, S.G.; Pain, D.J.; Fishpool, L.D.; Butchart, S.H.M.; Collingham, Y.C. and Huntley, B., 2009. Projected impacts of climate change on a continent wide protected area network. Ecology Letters. Vol. 12, pp: 420-431. 
  16. Hosseini, S.M.; Fazilati, M.; Moulavi, F.; Foruzanfar, M.; Hajian, M. and Abedi, P., 2009. Reproductive potential of domestic Ovis aries for preservation of threatened Ovis orientalis isphahanica: In vitro and in vivo studies. European Journal of Wildlife Research. Vol. 55, pp: 239-246.
  17. IPCC (Intergovernmental Panel on Climate Change). 2007.  Climate Change 2007: IPCC Fourth Assessment Report. Cambridge, UK: Cambridge University Press. 112 p
  18. Jetz, W.; Wilcove, D.S. and Dobson, A.P., 2007. Projected impacts of climate and landuse change on the global diversity of birds. PLoS One. Vol. 5, pp: 1210-1219.
  19. Kanellopoulos, N.; Mertzanis, G.; Korakis, G. and Panagiotopoulou, M., 2006. Selective habitat uses by brown bear (Ursus arctos L.) in northern Pindos, Greece. Journal of Biological Research. Vol. 5, pp: 23-33.
  20. Khan, B.; Ablimit, A.; Khan, G.; Jasra, A.W.; Ali, H.; Ali, R.; Ahmad, E. and Ismail, M., 2016. Abundance, distribution and conservation status of Siberian ibex, Marco Polo and Blue sheep in Karakoram-Pamir mountain area. Journal of King Saud University-Science. Vol. 28, No. 3, pp: 216-225.
  21. Lamsal, P.; Kumar, L.; Aryal, A. and Atreya, K., 2018. Future climate and habitat distribution of Himalayan Musk Deer (Moschus chrysogaster). Ecological Informatics. Vol. 44, pp: 101-108.
  22. Luo, Z.; Jiang, Z. and Tang, S., 2015. Impacts of climate change on distributions and diversity of ungulates on the Tibetan Plateau. Ecological Applications. Vol. 25, No. 1, pp: 24-38.
  23. Malekpoor, H.; Morovati, M.; Tazeh, M. and Taghizadeh, R., 2018. Evaluating the desirable habitat of Ovis orientalis using the MaxEnt model (Case study: Tang Sayyad Protected Area). Animal Environment. Vol. 10, No. 4, pp: 45-54.
  24. Manne, L.L.; Brooks, T.M. and Pimm, S.L., 1999. Relative risk of extinction of passerine birds on continents and islands. Nature. Vol. 399, pp: 258-261.
  25. Milanovich, J.R.; Peterman, W.E.; Nibbelink, N.P. and Maerz, J.C., 2010. Projected loss of a salamander diversity hotspot as a consequence of projected global climate change. PLoS One. Vol. 5, pp: e12189.
  26. Mohammadi, S.; Ebrahimi, E.; Moghadam, M.S. and Bosso, L., 2019. Modelling current and future potential distributions of two desert jerboas under climate change in Iran. Ecological Informatics. Vol. 52, pp: 7-13.
  27. Pettorelli, N.; Pelletier, F.; von Hardenberg, A.; Festa Bianchet, M. and Coté, S.D., 2007. Early onset of vegetation growth vs. rapid green up: Impacts on juvenile mountain ungulates. Ecology. Vol. 88, pp: 381-390.
  28. R Development Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  29. Ripple, W.J.; Estes, J.A.; Beschta, R.L.; Wilmers, C.C.; Ritchie, E.G.; Hebblewhite, M.; Berger, J.; Elmhagen, B.; Letnic, M.; Nelson, M.P. and Schmitz, O.J., 2014. Status and ecological effects of the world’s largest carnivores. Science. Vol. 343, No. 6167, pp: 124-148.
  30. Salas, E.A.L.; Seamster, V.A.; Boykin, K.G.; Harings, N.M. and Dixon, K.W., 2017a. Modeling the impacts of climate change on Species of Concern (birds) in South Central USA based on bioclimatic variables. AIMS Environmental Science. Vol. 4, pp: 358-385.
  31. Salas, E.A.L.; Valdez, R. and Michel, S., 2017b. Summer and winter habitat suitability of Marco Polo argali in southeastern Tajikistan: A modeling approach. Heliyon. Vol. 3, No. 11, pp: e00445.
  32. Salas, E.A.L.; Valdez, R.; Michel, S. and Boykin, K.G., 2018. Habitat assessment of Marco Polo sheep (Ovis ammon polii) in Eastern Tajikistan: Modeling the effects of climate change. Ecology and evolution. Vol. 8, No. 10, pp: 5124-5138.
  33. Sanderson, E.W.; Jaiteh, M.; Levy, M.A.; Redford, K.H.; Wannebo, A.V. and Woolmer, G., 2002. The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. AIBS Bulletin. Vol. 52, No. 10, pp: 891-904.
  34. Sexton, J.P.; McIntyre, P.J.; Angert, A.L. and Rice, K.J., 2009. Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics. Vol. 40, pp: 415-436.
  35. St-Louis, A. and Côté, S.D., 2014. Resource selection in a high-altitude rangeland equid, the kiang (Equus kiang): influence of forage abundance and quality at multiple spatial scales. Canadian Journal of Zoology. Vol. 92, No. 3, pp: 239-249.
  36. Su, J.; Aryal, A.; Nan, Z. and Ji, W., 2015. Climate change induced range expansion of a subterranean rodent: Implications for rangeland management in Qinghai-Tibetan Plateau. PloS One. Vol. 10, No. 9, pp: e0138969.
  37. Thuiller, W.; Georges, D.; Engler, R.; Breiner, F.; Georges, M.D. and Thuiller, C.W., 2016. Package ‘biomod2’. https://cran.r-project.org/package=biomod2.
  38. Valdez, R., 2008. IUCN Red List of Threatened Species. Version 2011.2. Retrieved from: http://www.iucnredlist.org/apps/redlist/search Accessed 22.03.12.
  39. Valdez, R.; Nadler, C.F. and Bunch, T.D., 1978. Evolution of wild sheep in Iran. Evolution. Vol. 32, pp: 56-72.
  40. Van Beest, F.M. and Milner, J.M., 2013. Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate. PloS One. Vol. 8, No. 6, pp: e65972.
  41. Warren, D.L.; Matzke, N.J. and Iglesias, T.L., 2020. Evaluating presence‐only species distribution models with discrimination accuracy is uninformative for many applications. Journal of Biogeography, 47, pp: 167-180.
  42. White, K.S.; Gregovich, D.P. and Levi, T., 2018. Projecting the future of an alpine ungulate under climate change scenarios. Global change biology. Vol. 24, No. 3, pp: 1136-1149.
  43. Yousefi, M.; Ahmadi, M.; Nourani, E.; Rezaei, A.; Kafash, A.; Khani, A.; Sehhatisabet, M.E.; Adibi, M.A.; Goudarzi, F. and Kaboli, M., 2017. Habitat suitability and impacts of climate change on the distribution of wintering population of Asian Houbara Bustard Chlamydotis macqueenii in Iran. Bird Conservation International. Vol. 27, No. 2, pp: 294-304.
  44. Zuur, A.F.; Ieno, E.N. and Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical problems. Methods in ecology and evolution. Vol. 1, No. 1, pp: 3-14.