Evaluation of the Antibacterial Effects of Iron Oxide-Alginate Nanoparticles on Formation of Pseudomonas aeruginosa Biofilm

Document Type : Disease

Authors

1 Department of Genetics and Biotechnology, Faculty of Biological Science, Varamin- Pishva Branch, Islamic Azad University, Varamin, Iran

2 Department of Biochemistry and Biophysics, Faculty of Biological Science, Varamin- Pishva Branch, Islamic Azad University, Varamin, Iran

Abstract

Pseudomonas aeruginosa, is one of the important causes of nosocomial infections. Unfortunately, this bacterium has very high level of antibiotic resistance due to the presence of resistance genes, the efflux pumps and the formation of biofilms. The aim of this study was to investigate the inhibitory effect of magnetite-alginate nanoparticles (M-AlgNPs) on P. aeruginosa biofilm. M-AlgNPs were synthesized utilizing a coprecipitation method. The structural properties of the synthesized nanoparticles were investigated by using Fourier Transform Infrared (FT-IR) spectroscopy, Scanning Electron Microscopy (SEM), Dynamic Light Scattering (DLS) and X-ray Diffraction (XRD). Antibacterial activity was tested by determining the minimum inhibitory concentration (MIC) using microdilution method and biofilm formation was measured using microtiter plate tests. M-AlgNPs at a concentration of 0.256 to 90 µg/ml inhibited biofilm formation in clinical strains of Pseudomonas. The present investigation revealed that application of M-AlgNPs as antibacterial agents may be effective in inhibiting biofilm formation of P. aeruginosa.

Keywords


  1. Akbari, K.R. and Ali, A.A., 2017. Study of antimicrobial effects of several antibiotics and iron oxide nanoparticles on biofilm producing pseudomonas aeruginosa. Nanomedicine Journal. Vol. 4, pp: 37-43.
  2. Alshehri, A.M.; Wilson Jr, O.C.; Dahal, B.; Philip, J.; Luo, X. and Raub, C.B., 2017. Magnetic nanoparticle loaded alginate beads for local micro-actuation of in vitro tissue constructs. Colloids and Surfaces B: Biointerfaces. Vol. 159, pp: 945-955.
  3. Ansari, S.A.; Oves, M.; Satar, R.; Khan, A.; Ahmad, S. I.; Jafri, M.A.; Zaidi, S.K. and Alqahtani, M.H., 2017. Antibacterial activity of iron oxide nanoparticles synthesized by co-precipitation technology against Bacillus cereus and Klebsiella pneumoniae. Polish Journal of Chemical Technology. Vol. 19, pp: 110-115.
  4. Applerot, G.; Lellouche, J.; Lipovsky, A.; Nitzan, Y.; Lubart, R.; Gedanken, A. and Banin, E., 2012. Understanding the antibacterial mechanism of CuO nanoparticles: revealing the route of induced oxidative stress. Small. Vol. 8, pp: 3326-3337.
  5. Arakha, M.; Pal, S.; Samantarrai, D.; Panigrahi, T.K.; Mallick, B.C.; Pramanik, K. and Jha, S., 2015. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle-bacteria interface. Scientific Reports. Vol. 5, pp: 1-12.
  6. Arias, L.; Pessan, J.; Vieira, A.; Lima, T.; Delbem, A. and Monteiro, D., 2018. Iron Oxide Nanoparticles for Biomedical Applications: A Perspective on Synthesis, Drugs, Antimicrobial Activity, and Toxicity. Antibiotics. Vol. 7, pp: 1-32.
  7. Azam, A.; Ahmed, O.; Khan, H. and Memic, A., 2012. Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. International Journal of Nanomedicine. Vol. 7, pp: 6003-6009.
  8. Behera, S.S.; Patra, J.K.; Pramanik, K.; Panda, N. and Thatoi, H., 2012. Characterization and evaluation of antibacterial activities of chemically synthesized iron oxide nanoparticles. World Journal of Nano Science and Engineering. Vol. 2, pp:196-200.
  9. Berry, C.C.; Wells, S.; Charles, S. and Curtis, A.S., 2003. Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials. Vol. 24, pp: 4551-4557.
  10. Bruce, I.J. and Sen, T., 2005. Surface modification of magnetic nanoparticles with alkoxysilanes and their application in magnetic bioseparations. Langmuir. Vol. 21, pp: 7029-7035.
  11. Bucak, S.; Yavuztürk, B. and Sezer, A.D., 2012. Magnetic nanoparticles: synthesis, surface modifications and application in drug delivery. Recent Advances in Novel Drug Carrier Systems. Vol. 2, pp: 165-200.
  12. Caamano, M.A. and Carrillo, M.M., 2016. Iron Oxide Nanoparticle Improve the Antibacterial Activity of Erythromycin. Journal of Bacteriology and Parasitology. Vol. 7, pp: 1-4.
  13. Chatterjee, J.; Haik, Y. and Chen, C.J., 2001. Modification and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres. Journal of Magnetism and Magnetic Materials. Vol. 225, pp: 21-29.
  14. El-Shamy, O.A.; El-Azabawy, R.E. and El-Azabawy, O., 2019. Synthesis and Characterization of Magnetite Alginate Nanoparticles for Enhancement of Nickel and Cobalt Ion Adsorption from Wastewater. Journal of Nanomaterials. Vol. 6326012, pp: 1-8.
  15. Frieri, M.; Kumar, K. and Boutin, A., 2017. Antibiotic resistance. Journal of Infection and Public Health. Vol. 10, pp: 369-378.
  16. Gokulakrishnan, R.; Ravikumar, S. and Raj, J.A., 2012. In vitro antibacterial potential of metal oxide nanoparticles against antibiotic resistant bacterial pathogens. Asian Pacific Journal of Tropical Disease. Vol. 2, pp: 411-413. 
  17. Gupta, A.K. and Gupta, M., 2005. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. Vol. 26, pp: 3995-4021.
  18. Gupta, A.K. and Wells, S., 2004. Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity studies. IEEE Transactions on Nanobioscience. Vol. 3, pp: 66-73.
  19. He, S.; Feng, Y.; Gu, N.; Zhang, Y. and Lin, X., 2011. The effect of γ-Fe2O3 nanoparticles on Escherichia coli genome. Environmental Pollution. Vol. 159, pp: 3468-3473.
  20. Huang, K.S.; Shieh, D.B.; Yeh, C.S.; Wu, P.C. and Cheng, F.Y., 2014. Antimicrobial applications of water-dispersible magnetic nanoparticles in biomedicine. Current Medicinal Chemistry. Vol. 21, pp: 3312-3322.
  21. Jung, W.K.; Koo, H.C.; Kim, K.W.; Shin, S.; Kim, S.H. and Park, Y.H., 2008. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology. Vol. 74, pp: 2171-2178.
  22. Kango, S.; Kalia, S.; Celli, A.; Njuguna, J.; Habibi, Y. and Kumar, R., 2013. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites-A review. Progress in Polymer Science. Vol. 38, pp: 1232-1261.
  23. Liong, M.; France, B.; Bradley, K.A. and Zink, J.I., 2009. Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles. Advanced Materials. Vol. 21, pp:1684-1689.
  24. Masadeh, M.M.; Karasneh, G.A.; Al-Akhras, M.A.; Albiss, B.A.; Aljarah, K.M.; Al-azzam, S.I. and Alzoubi, K.H., 2015. Cerium oxide and iron oxide nanoparticles abolish the antibacterial activity of ciprofloxacin against gram positive and gram negative biofilm bacteria. Cytotechnology. Vol. 67, pp: 427-435.
  25. Mathur, T.; Singhal, S.; Khan, S.; Upadhyay, D.; Fatma, T. and Rattan, A., 2006. Detection of biofilm formation among the clinical isolates of staphylococci: an evaluation of three different screening methods. Indian Journal of Medical Microbiology. Vol. 24, pp: 25-29.
  26. Mazdeh, P.Z.; Karizi, S.Z. and Javan, R.S., 2019. The inhibitory effect of Chitosan Coated Iron oxide nanoparticlses on Pseudomonas Aeruginosa clinical isolates and its relevance with bacterial biofilm. Journal of Animal Environment. Vol. 11, pp: 323-330.
  27. McCartney, J.; Collee, J. and Mackie, T., 1989. Practical medical microbiology. Charchill Livingstone. London, UK. 601 p.
  28. Morovati, A.; Panahi, H.A. and Yazdani, F., 2016. Grafting of allylimidazole and n-vinylcaprolactam as a thermosensitive polymer onto magnetic nano-particles for the extraction and determination of celecoxib in biological samples. International Pournal of Pharmaceutics. Vol. 513, pp: 62-67.
  29. Nikolić, M.; Vasić, S.; Đurđević, J.; Stefanović, O. and Čomić, L., 2014. Antibacterial and anti-biofilm activity of ginger (Zingiber officinale) ethanolic extract. Kragujevac Journal of Science. Vol.36, pp: 129-136.
  30. Nosrati, H.; Salehiabar, M.; Davaran, S.; Ramazani, A.; Manjili, H.K. and Danafar, H., 2017. New advances strategies for surface functionalization of iron oxide magnetic nano particles (IONPs). Research on Chemical Intermediates. Vol. 43, pp: 7423-7442.
  31. Prodan, A.M.; Iconaru, S.L.; Chifiriuc, C.M.; Bleotu, C.; Ciobanu, C.S.; Motelica, M.; Sizaret, S. and Predoi, D., 2013. Magnetic Properties and Biological Activity Evaluation of Iron Oxide Nanoparticles. Journal of Nanomaterials. Vol. 2013, pp: 1-8.
  32. Ramalingam, B.; Parandhaman, T. and Das, S.K., 2016. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials and Interfaces. Vol. 8, pp: 4963-4976.
  33. Rasamiravaka, T.; Labtani, Q.; Duez, P. and El Jaziri, M., 2015. The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BioMed Research International. Vol. 759348, pp: 1-18.
  34. Sharma, D.; Misba, L. and Khan, A.U., 2019. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance and Infection Control. Vol. 8, pp: 1-10.
  35. Singh, N.; Jenkins, G.; Asadi, R. and Doak, S.H., 2010. Potential toxicity of superparamagnetic iron oxide nanoparticles (SPION). Nano reviews. Vol. 5358, pp: 1-15.
  36. Taylor, P.K.; Yeung, A.T. and Hancock, R.E., 2014. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. Journal of Biotechnology. Vol. 191, pp:121-130.
  37. Tran, N.; Mir, A.; Mallik, D.; Sinha, A.; Nayar, S. and Webster, T.J., 2010. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. International Journal of Nanomedicine. Vol. 5, pp: 277-283.
  38. Wang, L.; Hu, C. and Shao, L., 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International Journal of Nanomedicine. Vol. 12, pp: 1227-1249.
  39. Wu, W.; Jiang, C.Z. and Roy, V.A., 2016. Designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale. Vol. 8, pp: 19421-19474.