DNA Barcoding of the Predator Birds in Mazandaran Province

Document Type : (original research)

Authors

1 Department of Environmental Science and Engineering, Faculty of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Department of Environmental Science, Faculty of Natural Resources, University of Tehran, Karaj, Iran

3 Department of Environment, Faculty of Fisheries and Environment, Gorgan University of Agriculture and Natural Resources, Gorgan, Iran

4 CEFE, PSL-EPHE (Biogéographie et Ecologie des Vertébrés), CNRS, University Montpellier, Univ Paul Valéry Montpellier 3, IRD, Montpellier, France

Abstract

Identifying the species richness and diversity is one of the basic steps to protect of the biodiversity. The proper identification of predator birds based on the morphological characteristics of the species is difficult, so species differentiation using molecular data has become an efficient technic for taxonomists. In this study, the nucleotide sequencing of the (COI) gene was studied for 36 samples of the Bird of prey of Mazandaran province. DNA extraction was done using blood and feather of collected samples. 660 pairs of nucleotides from the sequence of the mentioned gene were amplified using the polymerase chain reaction and sequenced. The results of phylogenetic tree show the separation of four families of Falconidae, Accipitridae, Tytonidae and other Strigidae of Mazandaran province with a total of 27 clads in 14 different Genus of Bird of prey. The average of Interspecies genetic divergence was estimated about 5.8 for Falconidae and 11.8 and 15.4 for Accipitridae and Tytonidae respectively. The Interspecies genetic distance was estimated between 1.5 to 12.3 for Falconidae, 3.9 to 16.3 for Accipitridae and 14.3 to 20.8 for Tytonidae. In this way, it can be possible to determine the range of species identification in the Bird of prey according to the mentioned range, and each of these clads can be described as an evolutionary unit which has a special genetic integrity and are qualified for protection.

Keywords

Main Subjects


  1. Aliabadian, M; Kaboli, M; Nijman, V. and Vences, M; 2009. Molecular Identification of Birds: Performance of Distance-Based DNA Barcoding in Three Genes to Delimit Parapatric Species. Plos One. Vol, 4, pp: 1-8.
  2. Bertolazzi, P.; Felici, G. and Weitschek, E., 2009. Learning to classify species with barcodes. BMC Bioinformatics. Vol. 10, No. 14, pp: S7.
  3. Blaxter, M.L; 2004. The promise of a DNA taxonomy. The Royal Society. Vol :359, pp: 669-679.
  4. Burbrink, F.T; Lawson, R. and Slowinski, J.B., 2000. Mitochondrial DNA phylogeography of the polytypic North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution. Vol. 54, pp: 2107-2118.
  5. Burbrink, F.T. and Castoe, T.A., 2009. Molecular phylogeography of snakes. Snakes: ecology and conservation. pp: 38-77.
  6. Carcraft, J., 1983. Species concepts and speciation analysis. Curr. Ornithol. Vol. 1, pp: 159-187.
  7. Darriba, D.; Taboada, G.L.; Doallo, R. and Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature methods. Vol. 9, pp: 772-772.
  8. Dawnay, N.; Ogden, R.; Mcewing, R.; Carvalho, G.R. and Thorpe, R.S., 2007. Validation of the barcoding gene COI for use in forensic genetic species identification. Forensic Science International. Vol. 15, No. 1, pp: 1-6.
  9. Frezal, L. and Leblois, R., 2008. Four years of DNA barcoding: Current advances and prospects. Infection, Genetics and Evolution. Vol. 8, pp: 727-736.
  10. Guindon, S. and Gascuel, O., 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic biology. Vol. 52, pp: 696-704.
  11. Hajibabaei, M.; Janzen, D.H.; Burns, J.M.; Hallwachs, W. and Hebert, P.D.N., 2006.  DNA barcoding distinguishes species of tropical Lepidoptera . Proceedings of the National Academy of Sciences of the USA. Vol. 103, pp: 968-971.
  12. Hebert, P.D.N.; Cywinska, A.; Ball, S.L. and deWaard, J.R., 2003. Biological identifications through DNA barcodes. Philosophical Transactions of the Royal Society B. Vol. 270, pp: 313-321.
  13. Hebert, P.D.N.; Stoeckle, M.Y.; Zemlak, T.S. and Francis, C.M., 2004. Identification of Birds through DNA Barcodes. PLoS Biology. Vol. 2, pp: 312.
  14. Huelsenbeck, J.P. and Ronquist, F., 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. Vol. 17, pp: 754-755.
  15. Kerr, K.; Stoeckle, M.; Dove, C.; Weigt, L.; Francis, C. and Hebert, P., 2007. Comprehensive DNA barcode coverage of North American birds. Molecular ecology notes. Vol. 7, pp: 535-543.
  16. Kerr, K.C.R.; 2010. Exploring the efficacy, utility, and limitations of DNA barcoding within the class Aves. 148 p.
  17. Makowsky, R.; Marshall Jr, J.C.; McVay, J.; Chippindale, P.T. and Rissler, L.J., 2010. Phylogeographic analysis and environmental niche modeling of the plain bellied watersnake (Nerodia erythrogaster) reveals low levels of genetic and ecological differentiation. Molecular phylogenetics and evolution. Vol. 55, pp: 985-995.
  18. Park, H.Y.; Yoo, H.S.; Jung, G. and Kim, C.B., 2011. New DNA barcodes for identification of Korean birds. Genes & Genomics. Vol. 33, pp: 91-95.
  19. Prum, R.O.; Berv, J.S.; Dornburg, A.; Field, D.J.; Townsend, J.P.; Lemmon, E.M. and Lemmon, A.R., 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature. Vol. 526, pp: 569-573.
  20. Rubinoff, D., 2006. DNA barcoding evolution into the familiar. Conservation Biology. Vol.5, pp: 1548-1589.
  21. Rubinoff, D., 2006. Utility of Mitochondrial DNA Barcodes in Specie Conservation. Conservation Biology. Vol. 20, pp: 1026-1033.
  22. Smith, M.A.; Poyarkov, N.A. and Hebert, P.D.N., 2008. CO1 DNA barcoding amphibians: take the chance, meet the challenge. Molecular ecology resources. Vol.8, pp: 235-246.
  23. Stoeckle, M.; Janzen, D.; Hallwachs, W.; Hanken, J. and Baker, J., 2003. Taxonomy DNA, and the Barcode of Life. Draft Conference Report. 10-12 september. New York.
  24. Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M. and Kumar, S., 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution. Vol. 28, pp: 2731-2739.
  25. Thompson, J.D.; Higgins, D.G. and Gibson, T.J.; 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic acids research. Vol. 22, pp: 4673-4680.
  26. Torstrom, S.M.; Pangle, K.L. and Swanson, B.J., 2014. Shedding subspecies: The influence of genetics on reptile subspecies taxonomy. Mol. Phylogenet. Evol. Vol. 76, pp: 134-143.
  27. Valentini, A.; Pompanon, F. and Taberlet, P., 2008. DNA barcoding for ecologists. Trends in Ecology and Evolution. Vol. 24, pp: 110-117.
  28. Ward, R.W.; Zemlak, T.S.; Innes, B.H.; Last, P.R. and Hebert, P.D.N., 2005. DNA barcoding Australia's fish species . Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Vol. 360 , pp: 1847- 1857 .
  29. Zink, R.M.; Barrowclough, G.F.; Atwood, J.L. and Blackwell-Rago, R.C., 2000. Genetics, taxonomy, and conservation of the threatened California Gnatcatcher. Conserv. Biol. Vol. 14, pp: 1394.
  30. Zink, R.M., 2004. The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proceedings of the Royal Society of London Series B: Biological Sciences. Vol. 271, pp: 561-564.