Utilization of Chemical material for mitigation of Cochlodinium polykrikoides bloom and their impact on the Litopenaeus vannamei shrimp

Document Type : Ecology

Authors

Iran Shrimp Research Institute , Institute of Fisheries Research, Agricultural Research, Education and Promotion Organization, Bushehr, POBox: 1374

Abstract

To identify the safe chemical substance against red tide in coastal waters wetlands such as Litopenaeus vannamei shrimp ponds, concentration effects of 0.01 mg/l, 0.04 mg/l, 0.4 mg/l, 1 mg/l and 1 gr/l Magnesium Hydroxide, Poly Aluminum Chloride (PAC), Aluminum Sulfate, Sodium Hypochlorite, Calcium Carbonate, Ferrous Sulfate, Starch on Laboratory cultures of Cochlodinium polykrikoides (100000 cell/l) and Litopenaeus vannamei have been studied in Iranian Shrimp research center. Cochlodinium polykrikoides were cultured under a cool white fluorescent light of 2000 lux intensity with a 12:12 h light: dark cycle. Temperature and salinity were controlled 28 °C and of 30 g/l (ppt), respectively.
Finding show that, all concentration of above substance, completely disintegrated of cultured Cochlodinium polykrikoides. Also except 1 g/l Sodium Hypochlorite (96h LC50), in other concentrations of studied substances, there weren’t seen shrimp mortality after 96h. Among studied substance, starch have limit effects on the shrimp health and environment also it is used as a carbon source for biofloc production in shrimp ponds; therefore it can be suitable for controlling of Cochlodinium polykrikoides in shrimp farms.
 

Keywords


  1. Barnes, J., 1987. Invertebrate Zoology. Fifth edition, Saunders College Publishing. 893 P.
  2. Bauman A.G.; Burt J.A.; Feary, D.A.; Marquis E. and Usseglio P., 2010. Tropical harmful algal blooms: An emerging threat to coral reef communities? Marine Pollution Bulletin.
  3. Chen, J.C. and Tu, C.C., 1991. Influence of ammonia on growth of Penaeusmonodon Fabricius post-larvae. Aquaculture Research. Vol. 22, No. 4, pp: 457-462.
  4. Cortes, A.R.; Nunez-Pasten, A.; Esparza, H.M. and Barraza, I., 1994. Variacio´n y abundancia del fitoplancton de estanques semi-intensivos e intensivos para el cultivo de camaro´n en Sinaloa, Informe final Proyecto. Tech. Report,
    pp: 177-218.
  5. Cortes-A.R. and Alonso R., 1997. Mareas rojas durante 1977 en la bahı´a de Mazatla´n, Sinaloa, Mexico, Cienc. Mar UAS. Vol. 15, pp: 31-37.
  6. Diwan, A.D; Joseph, S. and Ayyappan, S., 2009. Physiology of reproduction, breeding and culture of tiger shrimp (Penaeus monodon). Naredera Publishing House. Delhi (India). 292 p.
  7. Eco-Zist Consulting Engineers. 1978. Iran 1 and 2 Environmental Report. Atomic Energy Organization of Iran. Volume I, II.
  8. Gallert, C. and Winter, J., 2005. Environmental Biotechnology. Concepts and Applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. ISBN: 3-527-30585-8.
  9. Glibert, P.; Landsberg, J.; Evans, J.; Al-Sarawi, M.; Faraj, M.; Al-Jaeallah, M.; Hay‐wood, A.; Ibrahem, S.; Klesius, P.; Powell, C. and Shoemaker, C., 2002. A fish kill of massive proportion in Kuwait Bay, Arabian Gulf 2001: the roles of bacterial disease, harmful algae, and eutrophication. Harmful Algae. Vol. 1, pp: 215-231.
  10. Heil, C.A.; Glibert, P.M.; Al-Sarawl, M.A.; Faraj, M.; Behbehani, M. and Husain, M., 2001. First record of a fish-killing Gymnodinium sp bloom in Kuwait Bay, Arabian Sea: chronology and potential causes. Mar. Ecol. Prog. Ser. Vol. 214, pp: 15-23.
  11. Hach Company. 2002. DR/4000 Spectrophotometer procedure manual. USA: Hach Company.
  12. Jawetz, E.; Melnick, G.L. and Adelberg, E.A., 1987. Review of Medical Microbiology. Appleton and Lange Norwalk, Connecticut/ Los Altos, California.
  13. Jiang, J.Q. and Graham, N. J. D., 2003. Development of Optical Poly-Aluminum-Iron Sulphate Coagulant [J]. J. Environmental Engineering. Vol. 129, No. 8, pp: 699-708.
  14. Jmenez, R., 1989. Red Tide and Shrimp Activity in Ecuador. In: Olsen, S. and Arriaga, L., editors. A Sustainable Shrimp Mariculture Industry for Ecuador. Narragansett, RI: Coastal Resources Center, University of Rhode Island.
  15. Kim, D.I.; Matsuyama, Y.; Nagasoe, S.; Yamaguchi, M.; Yoon, Y.H.; Oshima, Y.; Imada, N. and Honjo, T., 2004. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J. Plankton Res. Vol. 26, pp: 61-66.
  16. Kim, J.D., Kim, B. and Lee, C.G., 2007. Alga-lytic activity of Pseudomonas fluorescens against the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae). Biol. Control. Vol.  41, pp: 296-303.
  17. Koji, k.; Yuki, M. and Naganuma, T., 1998. Removal of biofouling and red tide algae by Triosyn agent. Abstract of 2nd Meeting for Japan Marine Biotechnology. 89 p.
  18. Lazur, A., 2007. Growout Pond and Water Quality Management. JIFSAN Good Aquacultural Practices Manual, section 6. University of Maryland. 16 p.
  19. Matsuoka, K.; Iwataki, M.; Kawami, H., 2008. Morphology and taxonomy of chain-forming species of the genus Cochlodinium Dinophyceae. Harmful Algae. Vol. 7, No. 3, pp: 261-270. 
  20. Nyan, T., 2012. Future of Biofloc technology in Asia. Aquaculture Round Table Fisheries Phoket, Thailan.
  21. Ojha, J.S., 2006. Aquaculture nutrition and biochemistry. Agrotech Publishing Academy. Udaipur. 186 p.
  22. Pecora, J.D.; Sousa-Neto, M.D. and Estrela, C., 1999. Solucoes Irrigadoras Auxiliaries Do Prepare to Canal Radicular. In: Estre, C. and Figuiredo, J.A.P., Eds., Endodontia-Principios biologicos e mecanicos, Artes Medicas, Sao Paulo. pp: 552-569.
  23. Richlen, M.; Morton, S.; Jamali, E.; Rajan, A. and Anderson, D.M., 2010. The catastrophic 2008-2009 red tide in the Arabian Gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harm‐ful Algae. Vol. 9, pp: 163-172.
  24. ROPME. 2010. Manual of Oceanographic Observation and Pollutant Analysis Methods (MOOPAM), second Publication Kuwait.
  25. Ryu, H.Y.; Shim, J.M.; Bang, J.D. and Lee, C., 1998. Experimental chemical treatment for the control of dinoflagellate, Cochlodinium polykrikoides in the land-based culture of olive flounder Paralichthys olivaceus. Kor. J. Aquacult. Vol. 11, pp: 285-294.
  26. Sale, P.; Feary, D.; Burt, J.; Bauman, A.; Cavalcante, G.; Drouillard, K.; Kjerfve, B.; Marquis, E.; Trick, C.; Usseglio, P. and Van Lavieren, H., 2010. The growing need for sustainable ecological management of marine communities of the Persian Gulf. Am‐bio. Vol. 40, pp: 4-17.
  27. Secher, S., 2009. Measures to Control Harmful Algal Blooms The Plymouth Student Scientist. Vol. 2, No. 1, pp: 212-227.
  28. Shen, Y. H. and Dempsey, B.A., 1998. Synthesis and Speciation of Poly-ferric-sulfate for water treatment. Environmental International. Vol. 24, No. 8, 899910.
  29. Steidinger, K.A., 1975. Basic factors influencing red tides. In LoCicero, V. R. (ed.), Proceedings of the First International Conference on Toxic Dinoflagellates. Massachusetts Science and Technology Foundation, Massachusetts. pp: 153-162.
  30. Toshifum, Y., 2003. Occurrence of Cochlodinium polykrikoides red tide and its growth characteristics in Imari Bay in 1999. Bulletin of Nakasaki prefectural Institute of Fisheries. No. 28. pp: 21-26.
  31. UNEP GEO team. 2000. Global Environment Outlook. United Nations Environment Programme.
  32. Yoon, Y.H., 2001. A summary on the red tide mechanisms of the harmful dinoflagellate, Cochlodinium polykrikoides in Korean coastal waters, Bull. PlanktonSoc. Japan. Vol. 48, No. 2, pp: 113-120.
  33. Whetstone, J.M.; Treece, G.D.; Browdy, C.L.and Stokes, A.D., 2002. Opportunities and Constraints in Marine Shrimp Farming. SRAC (Southern Regional Aquaculture Center) Publication No. 2600.