The Use of Sagittal Otolith Shape Analysis in Discriminating of Four Carangidae Species from the Persian Gulf

Document Type : Morphology

Authors

1 Department of Biology, Islamic Azad University, Science and Research Branch, Tehran, Iran, POBox: 775-14515

2 Agricultural Research and Training Organization, Fisheries Research Institute of Iran, Tehran, POBox: 149-14965

Abstract

The sagittal otolith’s contours were studied to discriminate between four Carangid species including Carangoides coeruleopinnatus, Carangoides chrysophrys, Carangoides malabaricus, and Megalaspis cordyla from the Persian Gulf. After preparing Sagittal otolith photos, their contours were analysed by elliptic Fourier analysis using Shape software. The chain codes, harmonics and elliptic Fourier coefficients were obtained for each sample. The mean otolith contours values were rebuilt by specific values. The shapes of otoliths were studied by elliptic Fourier descriptors of 20 harmonics and 6 shape indices. These four species were discriminated successfully using shape indices (72.2%), elliptic Fourier coefficients (73.7%), or combination of both techniques (72.2%). No classification success was achieved in discriminant analysis using merely shape indices. The results of principal components analysis (PCA) also indicated that the percentage of variance in the first principal component of each species showed maximum value and the principal components were reduced respectively. However, cumulative variance showed how the estimated shape by elliptical Fourier transformation can represent the corresponded species shape. The results of this study show that combining the size according to shape descriptors and EFD is a suitable tool to distinguish of four Carangid species.

Keywords


  1. Aguera, A. and Brophy, D., 2011. Use of saggittal otolith shape analysis to discriminate Northeast Atlantic and western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fisheries Research. Vol. 110, pp: 465-471.
  2. Battaglia, P.; Malara, D.; Romeo, T. and Andaloro, F., 2010. Relationships between otolith size and fish size in some mesopelagic and bathypelagic species from the Mediterranean Sea (Strait of Messina, Italy). Scientia Marina. Vol.74, pp: 605-612.
  3. Begg, G.A.; Overholtz, W.J. and Munroe, N.J., 2001. The use of internal otolith morphometrics for identification of haddock (Melanogrammus aeglefinus) stocks on George Bank. Fishery Bulletin. Vol .99, pp: 1-14.
  4. Cadrin, S.X. and Friedland, K.D., 2005. Morphometric outlines, in Stock Identification Methodology, Cadrin,
    S.X., et al., Eds., Amsterdam: Elsevier. pp: 173-184.
  5. Campana, S.E., 2001. Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology. Vol. 59, pp: 197-242.
  6. Campana, S.E., 2005. Otolith elemental composition as a natural marker of fish stocks. In: Stock Identification Methods. Academic Press, N.Y. pp: 227-245.
  7. Campana, S.E. and Casselman, J.M., 1993. Stock discrimination using otolith shape analysis. Canadian Journal of Fisheries and Aquatic Sciences. Vol. 50, No. 1, pp: 1062-1083.
  8. Carlo, J.M.; Brabeitos, M.S. and Lasker, H.R., 2011. Quantifying complex shapes: Elliptical Fourier Analysis of Octocoral sclerites. The Biological Bulletin. Vol. 220, pp: 224-237.
  9. Crampton, J.S., 1995. Elliptic Fourier shape analysis of fossil bivalves: some practical considerations. Lethaia.
    Vol. 28, pp: 179-186.
  10. Devries, D.A.; Grimes, Ch.B. and Prager, M.H., 2002. Using otolith shape analysis to distinguish eastern Gulf of Mexico and Atlantic Ocean stocks of king mackerel. Fisheries Research. Vol. 57, pp: 51-62.
  11. Dou, S.Z.; Yu, X. and Cao, L., 2012. Otolith shape analysis and its application in fish stock discrimination: a case study. Oceanologia et Limnologia Sinica. Vol. 43, pp: 702-712.
  12. Gonzalez-Salas, C. and Lenfant, P., 2007. Inter annual variability and intra-annual stability of the otolith shape in European anchovy Engraulis encrasicholus in the Bay of Biscay. Journal of Fish Biology. Vol. 70, pp: 35-49.
  13. Iwata, H. and Ukai, Y., 2002. Shape: a computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors, Journal of heredity. Vol. 93, pp: 384-385.
  14. Kuhl, F.P. and Giardina, C.R., 1982. Elliptic Fourier features of closed contour. Computer Graphics and Image Process. Vol .18, pp: 236-258.
  15. L’Abée-Lund, J.H., 1988. Otolith shape discriminates between juvenile Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L. Journal of Fish Biology. Vol .33, pp: 899-903.
  16. Legua, J.; Plaza, G.; Perez, D. and Arkhipkin, A., 2013. Otolith shape analysis as a tool for stock identification of the southern blue whiting, Micromesistius australis. Latin American Journal of Aquatic Research. Vol. 41, No. 3,
    pp: 479-489.
  17. Lestrel, P.E., 1997. Fourier Descriptors and their Application in Biology. Cambridge University Press, UK.
     466 p.
  18. Lombarte, A.; Chic, O.; Parisi-Baradad, V.; Olivella, R.; Piera, J. and Garcia-Ladona,E., 2006.  A web-based environment for shape analysis of fish otoliths. Scientia Marina. Vol. 70, No.1, pp: 147-152.
  19. Lord, C.; Morat, F.; Lecomte-Finiger, R. and Keith, P., 2012. Otolith shape analysis for three Sicyopterus (Teleostei: Gobioidei: Sicydiinae) species from New Caledonia and Vanuatu. Environmental Biology of Fishes. Vol. 93, pp: 209-222.
  20. Merigot, B.; Letourneur, Y. and Lecomte-Finiger, R., 2007. Characterization of local populations of the common sole Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Marine Biology. Vol. 151, pp: 997-1008.
  21. Morales-Nin, B., 2000. Review of growth regulation processes of otolith daily increment formation. Journal of Fisheries Research. Vol. 46, pp: 53-67.
  22. Morat, F.; Betoulle, S.; Robert, M., Thailly, A.F.; Biagianti-Risbourg, S. and Lecomte-Finiger, R., 2008. What can otolith examination tell us about the level of perturbations of Salmonid fish from the Kerguelen Islands? Ecology of Freshwater Fish. Vol. 17, pp: 617-627.
  23. Morat, F.; Mante, A.; Drunat, E.; Dabat, J.; Bonhomme, P.; Harmelin-Vivien, M. and Letourneur, Y., 2011. Diet of the Mediterranean European shag, Phalacrocorax aristotelis desmarestii, its ecological significance and interaction with local fisheries in the Riou Archipelago (Marseilles, France). Vie Milieu. Vol. 61, pp: 77-86.
  24. Paxton, J.R., 2000. Fish otoliths: Do sizes correlate with taxonomic group, habitat and/or luminiscense? Royal Society. Vol. 355, pp: 299-1303.
  25. Pavlov, D.A., 2016. Differentiation of Three Species of the Genus Upeneus (Mullidae) Based on Otolith Shape Analysis. Journal of Ichthyology. Vol. 56, No. 1, pp: 37-51.
  26. Ponton, D., 2006. Is geometric morphometric efficient for comparing otolith shape of different fish species? Journal of Morphology. Vol. 267, pp: 750-757.
  27. Reed, D.L.; Carpenter, K.E.; and deGravelle, M.J., 2002. Molecular systematic of the Jacks (Perciformes: Carangidae) based on mitochondrial cytochrome b sequences using parsimony, likelihood, and Bayesian approaches. Molecular Phylogenetics and Evolution. Vol. 23, pp: 513-524.
  28. Reichembacher, B.; Sienknecht, U.; Küchenhoff, H.and Fenske, N., 2007. Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant Killifish (Aphanius prolebias). Journal of Morphology. Vol. 268, pp: 898-915.
  29. Renán, X.; Pérez-Díaz, E.; Colás- Marrufo, T.; Garza Pérez, J. and Brulé, T., 2010. Using Otolith Shape Analysis to Identify Different Stocks of Epinephelus morio from the Campeche Bank. 63rd Gulf and Caribbean Fisheries Institute. pp: 200-206.
  30. Rossi-Wongtschowski, C.L.D.B; Siliprandi, C.C.; Brenha, M.R.; Giaretta, M.B.; Conversani, V.R.M. and Santificetur, C., 2014. Atlas of marine bony fish otoliths (sagittae) of southeastern southern Brazil. Brazilian Journal of Oceanography. Vol. 62, pp: 1-103.
  31. Sadighzadeh, Z.; Tuset, V.M.; Valinassab, T.; Dadpour, M.R. and Lombarte, A., 2012. Comparison of different otolith shape descriptors and morphometric for the identification of closely related species of Lutjanus spp. from the Persian Gulf. Marine Biology Research. Vol. 8, pp: 802-814.
  32. Sadighzadeh, Z.; Valinassab, T.; Lombarte, A. and Tuset, V., 2014. Use of otolith shape for stock identification of Johns snapper, Lutjanus johnii (Pisces: Lutjanidae), from the Persian Gulf and the Oman Sea. Fisheries Research. Vol. 155, pp: 59-63.
  33. Simoneau, M.; Casselman, J.M. and Forti, N.R., 2000. Determining the effect of negative allometry (length/height relationship) on variation in otolith shape in lake trout (Salvelinus namaycush), using Fourier-series analysis. Canadian Journal of Zoology. Vol. 78, pp: 1597-1603.
  34. Škeljo, F. and Ferri, J., 2012. The use of otolith shape and morphometry for identification and size-estimation of five wrasse species in predator-prey studies. Journal of Applied Ichthyology. Vol. 28, pp: 524-530.
  35. Stransky, C. and Mac Lellan, S.E., 2005. Species separation and zoogeography of redfish (genus Sebastes) by otolith shape analysis, Canadian Journal of Fisheries and Aquatic Sciences. Vol. 62, No. 10, pp: 2265-2276.
  36. Tracey, S.R.; Lyle, J.M. and Duhamel, G., 2006. Application of elliptical fourier analysis of otolith form as a tool for stock identification. Fisheries Research. Vol. 77, pp: 138-147.
  37. Tuset, V.M.; Lozano, I.J.; Gonz_alez, J.A.; Pertusa, J.F. and Garcı´a-Dı´az, M.M., 2003. Shape indices to identify regional differences in otolith morphology of scomber Serranus cabrilla (L., 1758). Journal of Applied Ichthyology. Vol. 19, pp: 88-93.
  38. Tuset, V.M.; Lombarte, A.; Gonzales, J.A.; Pertusa, J.F. and Lorentes, M.J., 2003a. Comparative morphology of the sagittal otolith in Serranus spp. Journal of Fish Biology. Vol.  63, pp: 1491-1504.
  39. Tuset, V.M.; Lozano, I.J.; González, J.A.; Pertusa, J.F. and García- Díaz, M.M., 2003b. Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758). Journal of Applied Ichthyology. Vol. 19, pp: 88-93.
  40. Tuset, V.M. and Rosin, P.L., 2006. Sagittal otolith shape used in the identification of fishes of the genus Serrranus. Fisheries Research. Vol. 81, pp: 316-325.
  41. Valinassab, T.; Seifabadi, J.; Homauni, H. and Afraie Bandgi, M.A., 2012. Relationships between fish
    size and otolith morphology in ten clupeids from the Persian Gulf and Gulf of Oman. Cybium, Vol.  36, No, 4,
    pp: 505-509.
  42. Vignon, M. and Morat, F., 2010. Environmental and genetic determinant of otolith shape revealed by a non indigenous tropical fish. Marine Ecology Progress Series. Vol. 411, pp: 231-241.
  43. Vignon, M., 2012. Ontogenic trajectories of otolith shape during shift in habitat use: interaction between otolith growth and environment. Journal of Experimental Marine Biology and Ecology.  Vol. 420-421, pp: 26-32.
  44. Yu, X.; Cao, L.; Liu, J; Zhao, B.; Shan, X. and Dou, S., 2014. Application of otolith shape analysis for stock discrimination and species identification of five goby species (Perciformes: biidae) in the northern Chinese coastal waters. Chinese Journal of Oceanology and Limnology. Vol. 32, pp: 1060-1073.
  45. Zorica, B.; Sinovčić, G. and Čikeš Keč, V., 2010. Preliminary data on the study of otolith morphology of five pelagic fish species from the Adriatic Sea (Croatia). Acta Adriat. Vol. 51, No. 1, pp: 89-96.