بررسی ایمنی زایی و محافظت کنندگی لیپوپلی ساکارید یرسینیا راکری (Yersinia ruckeri) در برابر یرسینیوزیس در ماهی قزل‌آلای رنگین‌کمان (Oncorhyncus mykiss)

نوع مقاله : محیط زیست جانوری

نویسندگان

1 گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 گروه علوم پایه، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

چکیده

با توجه به اهمیت یرسینیوزیس در کشور و ضرورت واکسیناسیون ماهی در این تحقیق اثر لیپوپلی ساکارید باکتری یرسینیا راکری بر کارایی و ایمنی ‌زایی باکترین یرسینیا راکری در تجویز تزریقی، خوراکی و غوطه ‌وری ارزیابی گردید.  480 قطعه ماهی (1/2± 7 گرم) به‌ صورت تصادفی به 8 گروه مساوی، هر گروه در سه تکرار (هر تکرار 20 ماهی) تقسیم گردیدند. گروه A، B و C به ­ترتیب با خوراک حاوی LPS  (سیصد میکروگرم/کیلوگرم/وزن بدن)، +LPSباکترین (109cfu/گرم) و باکترین در هفته اول و سوم تحقیق تغذیه شدند. در گروه غوطه ‌وری (D) ماهی­ ها به مدت 2 دقیقه در روز صفر و 14 در سوسپانسیون باکترین (109cfu /میلی ­لیتر) غوطه ‌ور شدند. گروه­ های تزریقی (E،F و G) به­ ترتیب  با باکترین (1010cfu/میلی­ لیترLPS (سیصد میکروگرم/میلی ­لیتر) و باکترین+LPS به ­روش داخل صفاقی ایمن شدند و در روزهای صفر‏، 30، 60 نمونه خون و سرم تهیه ‌شده و شاخص‌ های خونی و ایمنی بین ماهیان تیمارها مقایسه گردیدند. نتایج نشان داد که تزریق باکترین+ LPS تحریک شاخص‌ های ایمنی غیراختصاصی و اختصاصی را  به ‌طور معنی ‌داری در اکثر گروه‌ها بهبود بخشید (0/05>p )میزان کارایی تجویز باکترین+LPS درروش خوراکی  با روش غوطه ­وری مشابه بوده و به‌ طور معنی ‌داری کم ­تر از روش تزریقی بود (0/05>p ). نتایج تحقیق جاری نشان داد که اضافه نمودن LPS به باکترین علاوه بر بهبود کارایی واکسن به ­روش تزریقی و خوراکی، ایمنی ‌زایی آن ‌ها را هم افزایش داد. لذا می‌ توان بعد از مطالعات  تکمیلی از آن به‌ عنوان یک کاندید مناسب و اقتصادی در تهیه واکسن یرسینیوزیس در ماهی قزل ‌آلا استفاده کرد.   

کلیدواژه‌ها


عنوان مقاله [English]

Survey on Immunogenicity and protective efficacy of Yersinia ruckeri lipopolysaccharide (LPS) against yersiniosis disease in Rainbow trout (Oncorhyncus mykiss)

نویسندگان [English]

  • Zahra Tulaby Dezfuly 1
  • Mojtaba Alishahi 1
  • Masoud Ghorbanpour 2
  • Mehrzad Masbah 1
  • Mohamad Reza Tabandeh 3
1 Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Department of Pathobiology, School of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

Regarding the importance of yersiniosis in the country and the necessity of vaccination of fish, in this study, the effects of Yersinia ruckeri lipopolysaccharide on the efficacy and immunity of Yersinia ruckeri bacterin were evaluate. 480 pieces of fish (7±1.2 g) were randomly divided into 8 equal groups, each group was divided into three replicates (20 fish/ replicate). Group A, B and C were fed with LPS (300μg/kg/Bw), LPS+bacterin (109 cfu/g) and bacterin respectively in the first and third weeks of the study. In the immersion group (D), the fish were immersed in the bacterial suspension (109 cfu/ml) for 2 minutes at 0 and 14 days. The injection groups (E, F and G) were immunized by intraperitoneal route with (1010 cfu/ml), LPS (300 μg /ml) and bacterin+LPS respectively, and on days 0, 30 and 60 blood and serum samples were prepared then blood and immune parameters were compared between immunized fish. The results showed that injection of bacterin+LPS significantly improved the stimulation of nonspecific and specific immunity factors in most groups (p < 0.05) The efficacy of bacterin +LPS in the oral treatment was similar to immersion immunization and was significantly lower than the injection method (p < 0.05). The results of the current study showed that adding LPS to bacterin, in addition to improving the efficacy of the vaccine by injection and oral administration, also increased their immunization. Therefore, after supplementary studies, it can be used as an appropriate and economical candidate for the preparation of the economical vaccine in trout.

کلیدواژه‌ها [English]

  • Rainbow trout
  • Yersiniosis
  • LPS
  • Immunization
  1. سلطانی، م.؛ موسوی، ش.؛ ابراهیم ­زاده ­موسوی، ح. و میرزرگر،  س.، 1393. مطالعه مولکولی یرسینیا راکری، عامل یرسینیوزیس در برخی مزارع قزل­ آلای کشور. مجله دامپزشکی ایران. دوره 10، شماره 1، صفحات 59 تا 67.
  2. علیشاهی، م. و طولابی ­دزفولی، ز.، 1396. واکسیناسیون ماهی. دانشگاه شهید چمران اهواز، فصل 6، صفحات 123 تا 137.
  3. Abbass, A.; Sharifuzzaman, S.M. and Austin, B., 2010. Cellular components of probiotics control Yersinia ruckeri infection in rainbow trout, Oncorhynchus mykiss (Walbaum). Journal of Fish diseases. Vol. 33, No. 1, pp: 31-37.
  4. Altinok, I.; Capkin, E. and Boran, H., 2016. Comparison of molecular and biochemical heterogeneity of Yersinia ruckeri strains isolated from Turkey and the USA. Aquaculture. Vol. 450, pp: 80-88.
  5. Apicella, M.A., 2008. Isolation and characterization of lipopolysaccharides. In Bacterial Pathogenesis. Humana Press. pp: 3-13.
  6. Brandtzaeg, P. and Pabst, R., 2004. Let's go mucosal: communication on slippery ground. Trends in immunology. Vol. 25, No. 11, pp: 570-577.
  7. Chettri, J.K.; Mehrdana, F.; Hansen, E.B.; Ebbensgaard, A.; Overgaard, M.T.; Lauritsen, A.H. and Buchmann, K., 2017. Antimicrobial peptide CAP18 and its effect on Yersinia ruckeri infections in rainbow trout Oncorhynchus mykiss (Walbaum): comparing administration by injection and oral routes. Journal of fish diseases. Vol. 40, No. 1, pp: 97-104.
  8. Chettri, J.K.; Raida, M.K.; Kania, P.W. and Buchmann, K., 2012. Differential immune response of rainbow trout (Oncorhynchus mykiss) at early developmental stages (larvae and fry) against the bacterial pathogen Yersinia ruckeri. Developmental and Comparative Immunology. Vol. 36, No. 2, pp: 463-474.
  9. Deshmukh, S.; Raida, M.K.; Dalsgaard, I.; Chettri, J.K.; Kania, P.W. and Buchmann, K., 2012. Comparative protection of two different commercial vaccines against Yersinia ruckeri serotype O1 and biotype 2 in rainbow trout (Oncorhynchus mykiss). Veterinary immunology and immunopathology. Vol. 145, No. 1-2, pp: 379-385.
  10. Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T. and Smith, F., 1956. Colorimetric method for determination of sugars and related substances. Analytical chemistry. Vol. 28, No. 3, pp: 350-356.
  11. Ellis, A.E., 1990. Lysozyme assays. Techniques in fish immunology. Vol. 1, pp: 101-103.
  12. Esteban, M.Á. and Cerezuela, R., 2015. Fish mucosal immunity: skin. In Mucosal health in aquaculture. Academic Press. pp: 67-92.
  13. Fuglem, B.; Jirillo, E.; Bjerkås, I.; Kiyono, H.; Nochi, T.; Yuki, Y. and Koppang, E.O., 2010. Antigen-sampling cells in the salmonid intestinal epithelium. Developmental and Comparative Immunology. Vol. 34, No. 7, pp: 768-774.
  14. Ghosh, B.; Nguyen, T.D.; Crosbie, P.B.; Nowak, B.F. and Bridle, A.R., 2016. Oral vaccination of first-feeding Atlantic salmon, Salmo salar L., confers greater protection against yersiniosis than immersion vaccination. Vaccine. Vol. 34, No. 5, pp: 599-608.
  15. Ghosh, B.; Bridle, A.R.; Nowak, B.F. and Cain, K.D., 2015. Assessment of immune response and protection against bacterial coldwater disease induced by a live-attenuated vaccine delivered orally or intraperitoneally to rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture. Vol. 446, pp: 242-249.
  16. Giri, S.S.; Chi, C.; Jun, J.W. and Park, S.C., 2018. Use of bacterial subcellular components as immunostimulants in fish aquaculture. Reviews in Aquaculture. Vol. 10, No. 2, pp: 474-492.
  17. Gomez, D.; Sunyer, J.O. and Salinas, I., 2013. The mucosal immune system of fish: the evolution of tolerating commensals while fighting pathogens. Fish and shellfish immunology. Vol. 35, No. 6, pp: 1729-1739.
  18. Guttvik, A.; Paulsen, B.; Dalmo, R.A.; Espelid, S.; Lund, V. and Bøgwald, J., 2002. Oral administration of lipopolysaccharide to Atlantic salmon (Salmo salar L.) fry. Uptake, distribution, influence on growth and immune stimulation. Aquaculture. Vol. 214, No. 1, pp: 35-53.
  19. Kadowaki, T.; Yasui, Y.; Nishimiya, O.; Takahashi, Y.; Kohchi, C.; Soma, G.I. and Inagawa, H., 2013. Orally administered LPS enhances head kidney macrophage activation with down-regulation of IL-6 in common carp (Cyprinus carpio). Fish and shellfish immunology. Vol. 34, No. 6, pp: 1569-1575.
  20. Marsden, M.J.; Freeman, L.C.; Cox, D. and Secombes, C.J., 1996. Non-specific immune responses in families of Atlantic salmon, Salmo salar, exhibiting differential resistance to furunculosis. Aquaculture. Vol. 146, No. 1, pp: 1-16.
  21. Matsuura, Y.; Takaoka, N.; Miyazawa, R. and Nakanishi, T., 2017. A simple and non invasive method for analyzing local immune responses in vivo using fish fin. Developmental and Comparative Immunology. Vol. 74, pp: 136-143.
  22. Munang'andu, H.M. and Evensen, Ø., 2019. Correlates of protective immunity for fish vaccines. Fish & shellfish immunology. Vol. 85, pp: 140-132.
  23. Nya, E.J. and Austin, B., 2010. Use of bacterial lipopolysaccharide (LPS) as an immunostimulant for the control of Aeromonas hydrophila infections in rainbow trout Oncorhynchus mykiss (Walbaum). Journal of applied microbiology. Vol. 108, No. 2, pp: 686-694.
  24. Plant, K.P. and LaPatra, S.E., 2011. Advances in fish vaccine delivery. Developmental and Comparative Immunology. Vol. 35, No. 12, pp:1256-1262.
  25. Pridgeon, J.W.; Klesius, P.H.; Song, L.; and Zhang, D., 2013. Identification, virulence, and mass spectrometry of toxic ECP fractions of West Alabama isolates of Aeromonas hydrophila obtained from a 2010 disease outbreak. Veterinary Microbiology. Vol. 164, pp: 336-343.
  26. Rucker, R.R., 1965. Redmouth disease of rainbow trout (Salmo gairdneri). Bulletin-office international des epizooties. Vol. 65, No. 5, pp: 825-830.
  27. Ryckaert, J.; Bossier, P.; D’Herde, K.; Diez-Fraile, A.; Sorgeloos, P.; Haesebrouck, F. and Pasmans, F., 2010. Persistence of Yersinia ruckeri in trout macrophages. Fish and Shellfish Immunology. Vol. 29, No. 4, pp: 648-655.
  28. Selvaraj, V.; Sampath, K. and Sekar, V., 2006. Adjuvant and immunostimulatory effects of β-glucan administration in combination with lipopolysaccharide enhances survival and some immune parameters in carp challenged with Aeromonas hydrophila. Veterinary immunology and immunopathology. Vol. 114, No. 1, pp: 15-24.
  29. Sharifi, Y. and Akhlaghi, M.H., 2008. Detection and identification of virulent Yersinia ruckeri the causative agent of enteric red mouth disease in rainbow trout (Oncorhynchus mykiss) cultured in Fars province, Iran. Iranian Journal of Veterinary Research Shiraz University. Vol. 9, No. 4, pp: 347-352.
  30. Siwicki, A.K.; Anderson, D.P. and Rumsey, G.L., 1994. Dietary intake of immunostimulants by rainbow trout affects non-specific immunity & protection against furunculosis. Veterinary immunology & immunopathology. Vol. 41, No. 1-2, pp: 125-139.
  31. Skalli, A.; Castillo, M.; Andree, K.B.; Tort, L.; Furones, D. and Gisbert, E., 2013. The LPS derived from the cell walls of the Gram-negative bacteria Pantoea agglomerans stimulates growth and immune status of rainbow trout (Oncorhynchus mykiss) juveniles. Aquaculture. Vol. 416, pp: 272-279.
  32. Soltani, M. and Pourgholam, R., 2013. Some hematological and biochemical changes in blood serum of Grass carp (Ctenopharyngodon idella) vaccinated with Aeromonas hydrophila following exposure to sublethal concentration of diazinon. Iranian Journal of Fisheries Sciences. Vol. 12, No. 1, pp: 12-23.
  33. Soltani, M.; Fadaii, F. and Mehrabi, M.R., 1999. First report of a yersiniosis-like infection in Iranian farmed rainbow trout. Bulletin European Association of Fish Pathology. Vol. 9, No. 4, pp: 173-176.
  34. Swain, P.S.; Dash, P.K.; Sahoo, P.; Routray, S.K.; Sahoo, S.D.; Gupta, P.K. and Meher, N., 2006. Non-specific immune parameters of brood Indian major carp Labeo rohita and their seasonal variations. Fish and Shellfish Immunology. Vol. 22, pp: 38-43.
  35. Thrall, M.A., 2004. Veterinary hematology and clinical chemistry. Lippincott Whiliams& Wilkins, New York. pp: 241-402.
  36. Tobback, E.; Decostere, A.; Hermans, K.; Ryckaert, J.; Duchateau, L.; Haesebrouck, F. and Chiers, K., 2009. Route of entry and tissue distribution of Yersinia ruckeri in experimentally infected rainbow trout Oncorhynchus mykiss. Diseases of aquatic organisms. Vol. 84, No. 3, pp: 219-228.
  37. Villumsen, K.R.; Neumann, L.; Ohtani, M.; Strøm, H.K. and Raida, M.K., 2014. Oral and anal vaccination confers full protection against enteric redmouth disease (ERM) in rainbow trout. PLoS One. Vol. 9, No. 4, pp: 938-945.
  38. Wang, E.; Chen, X.; Wang, K.; Wang, J.; Chen, D.; Geng, Y.; Lai, W. and Wei, X., 2016. Plant polysaccharides used as immunostimulants enhance innate immune response and disease resistance against Aeromonas hydrophila infection in fish. Fish and shellfish immunology. Vol. 59, pp: 196-202.
  39. Zhang, D.; Pridgeon, J.W. and Klesius, P.H., 2014. Vaccination of channel catfish with extracellular products of Aeromonas hydrophila provides protection against infection by the pathogen. Fish and shellfish immunology.  Vol. 36, No. 1, pp: 270-275.