تعیین جنسیت گوزن قرمز (زیرگونه مرال) با استفاده از تکنیک Duplex PCR به عنوان، روشی مناسب برای تخمین اندازه مؤثر جمعیت، جهت طراحی برنامه های حفاظت ژنتیکی آن در زیستگاه های کشور

نوع مقاله : مقاله پژوهشی

نویسندگان

1 اداره کل حفاظت محیط زیست آذربایجان شرقی، تبریز، ایران

2 داروخانه دامپزشکی، تبریز، ایران

3 گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه تهران، کرج، ایران

چکیده

به علت اندازه کوچک جمعیت و ایزوله شدن گوزن قرمز زیرگونه مرال (Cervus elaphus)  در منطقه حفاظت شده ارسباران-آینالو، مقدار هم خونی  بالاست. کنترل جنسیت جهت حفظ اندازه­ مؤثر جمعیت در حد مناسب، امکان ایجاد هم خونی را کاهش می دهد. هدف از تحقیق حاضر، دستیابی و بهینه سازی تکنیک تعیین جنسیت در گوزن مرال به عنوان روشی مناسب برای تخمین اندازه مؤثر جمعیت و حفاظت ژنتیکی آن در ارسباران و زیستگاه های کشور می باشد. در این مطالعه نمونه خون از ورید وداجی و ورید دمی‌ گوزن ها به مقدار 5 سی سی در داخل‌ لوله‌های‌ حاوی‌ خلأ و EDTA  تهیه و به‌ بانک ژن اداره کل حفاظت محیط زیست آذربایجان شرقی منتقل‌ گردید. روش Duplex PCR بر طبق آغازگرهای کروموزوم (Y) تعیین جنسیت منطبق با ژن DEAD-box Y-linked protein (DBY) جایگاه ریزماهوارک BMC1009 به عنوان کنترل داخلی تکثیر شد. پس از دستیابی به شرایط بهینه تکنیک و تأیید جنسیت نمونه های با جنسیت معلوم از پیش تعیین شده، بار دیگر اقدام به جمع آوری مدفوع و استخراج DNA از نمونه های با جنسیت مجهول و تعیین جنسیت آن ها گردید. نتایج این تحقیق با تکرارپذیری بالا، وجود دو باند 310-280 (ریزماهوارک پلی مورف) و 180 جفت باز (bp) در گوزن های نر و 310-280 (ریزماهوارک پلی مورف) جفت باز (bp) در گوزن های ماده را نشان داد. نتایج ژنوتایپینگ نشان داد که تعداد 8 ماده و 15 نر شناسایی شد و شاخص اندازه مؤثر جمعیت (4) محاسبه گردید.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Sex determination in Red deer (Ceruvus elaphus maral); suitable method for estimating the effective population size for genetic conservation programs in the country habitats

نویسندگان [English]

  • Javad Ghahari 1
  • Davood Radmehr 2
  • Shirin Mahmoodi 3
1 General Department of Environmental Protection of East Azerbaijan, Tabriz, Iran
2 Veterinary Pharmacy, Tabriz, Iran
3 Department of Environment, Faculty of Natural Resources and Environment, University of Tehran, Karaj, Iran
چکیده [English]

Unfortunately, due to the small population size and isolation of red deer (Cervus elaphus) in protected area-Arasbaran-Aynalu, there are inbreeding and the highly rate of bottleneck. Sex controlling for sex maintain effective population size as appropriate, may reduce inbreeding. For this purpose the objective of this study was access and optimization techniques for Sex determination in Red deer(Ceruvus elaphus); suitable method for estimating the effective population size for genetic conservation programs in Arasbaran and the country habitats. For this purpose, bleeding in deer, taken from jugular vein and tail vein after anesthesia, blood samples in tubes containing EDTA vaccum with ice -40c to the gen bank of Department of East Azerbaijan was transferred. Duplex PCR using primers based on the chromosome (Y) in accordance with the sex-determining gene DEAD-box Y-linked protein (DBY) simultaneously used with BMC1009 locus were amplified as an internal control per each reaction. The results are reliable, there are two bands 280-310 (polymorphic band) and 180 base pairs (bp) in male deer and 280-310 (polymorphic band) base pairs (bp) in female deer showed. To confirm this, residual PCR products was applied for sequencing. Genotyping results showed that 8 females and 15 males were identified as indicators of effective population size 4, respectively.

کلیدواژه‌ها [English]

  • Arasbaran
  • Red Deer
  • sex determination
  1. Anderson, GB., 1987. Identification of embryonic sex detection of H-Y Theriogenology. Vol. 27, pp: 81-97.
  2. Alec, R.; Lindsay, A.; Jerrold, E. and Belant, L., 2007. A simple and improved PCR-based technique for white-tailed deer (Odocoileus virginianus) sex identification, Conserv Genet. Vol. 9, pp: 443-447.
  3. Bennett, L.J.; English, P.F. and McCain, R., 1940. A study of deer pop ulations by use of pellet-group counts. J. Wildl. Manage. Vol. 4, pp: 398-403.
  4. Boom, R.; Sol, C.J.A.; Salimans, M.M.M.; Jansen, C.L.; Wertheim-Van Dillen, P.M.E. and Van der Noordaa, J., 1989. Rapid and simple method for purification of nucleic acids. J of clinical microbiology. Vol. 28, No. 3, pp: 495-503.
  5. Cao, X.; Jiang, H. and Zhang, X., 2005. Polymorphic karyotypes andsex chromosomes in the tufted deer (Elaphodus cephalophus): cytogenetic studies and analyses of sex chromosome-linked genes. Cytogenet Genome Res. Vol. 109, pp: 512-518.
  6. Dreesen, C.J.F.M.; Dumoulin, J.C.M.; Evers, J.L.H.; Geraedts, J.P.M. and Pieters, M.H.E.C., 1995. Multiplex polymerase chain reaction for sex determination of single mouse blastomeres. Mol human reprod. 10, pp: 743-748.
  7. Etemad, E., 1986. Mammals of Iran part 2 (first ed.) Department of Environment, Tehran, Iran. 253 p.
  8. Foran, D.R.; Minta, S.C. and Heinemeyer, K.S., 1997. DNA-based analysis of hair to identify species and individuals for population research.
  9. Gardner, R.L. and Edwards, R.G., 1968. Control of the sex ratio at full term in rabbit by transferring sexed blastocysts. Nature. Vol. 218, pp: 346-349.
  10. Godfrey, R.; Dodson, R.; Bultman, J.; Tolleson, D.; Stuth, J. and Norman, A., 2001. Use of near infrared reflectance spectroscopy to differentiate pregnancy status and gender of hair sheep in the tropics. J. Anim. Sci. Vol. 79, No. 26.
  11. Gokulakrishnan, P.; Kumar, R.; Sharma, B.; Mendiratta, S. and Sharma, D., 2012. Sex determination of cattle meat by polymerase chain reaction amplification of the DEAD box protein (DDX3X/DDX3Y) gene. Asian Australas J Anim Sci. Vol. 25, pp: 733.
  12. Gour, D.S.; Dubey, P.P.; Jain, A.; Gupta, S.C.; Joshi, B.K. and Kumar, D., 2008. Sex determination in 6 bovid species by duplex PCR. JAG. Vol. 49, pp: 379-381.
  13. Gandini, G. and Oldenbroek, K., 2007. Strategies for moving from conservation to utilisation. In K. Oldenbroek, ed. Utilisation and conservation of farm animal genetic resources, Wageningen, the Netherlands, Wageningen Academic Publishers. pp: 29-54.
  14.  IUCN. 2017. The IUCN Red List of Threatened Species. http://www.iucnredlist.org.
  15. Javanshir, K., 1992. Study of the vegetation, agricultural general plan of Urmia water catchment, 324 p, Published by Planning office of Ministry of Agriculture, Iran Jame Company, Tehran, 1992.
  16. Lee, J.H.; Park, J.H.; Lee, SH.; Park, C.S. and Jin, D.I., 2004. Sexing using single blastomere derived from IVF bovine embryos by fluorescence in situ hybridization (FISH). Theriogenology. Vol. 62, pp: 1452-1458.
  17. Lynch, M.; Conery, J. and Burger, R., 1995. Mutation Accumulation and the Extinction of small Populations. The American Naturalist. Vol. 146, No. 4, pp: 489-518.
  18. Mowat, G. and Strobeck, C., 2000. Estimating population size of grizzly bears using hair capture, DNA profiling, and mark-recaptureanalysis. J Wildlife Manage. Vol. 64, pp: 183-193 & monitoring. Wildlife soc bull. 25, pp: 840-847.
  19. Pfeiffer, I. and Brenig, B., 2005. X-and Y- chromosome specific variants of the amelogenin gene allow sex determination in sheep (Ovis aries) and European red deer (Cervus elphus). BMC Genetics. Vol. 6, pp: 16.
  20. Shea, B.F., 1999. Determining the sex of bovine embryos using polymerase chain reaction results: a six-year retrospective study. Theriogenology. Vol. 51, pp: 841-854.
  21. Scandura, M., 2005. Individual sexing and genotyping from blood spots on the snow: A reliable source of DNA for non invasive genetic surveys. Conservation Genetics. Vol. 6, pp: 871-874.
  22. Takahashi, M.; Masuda, R.; Uno, H.; Yokoyama, M.; Suzuki, M.; Yoshida, M. and Ohtaishi, N., 1998. Sexing of carcass remains of the sika deer (Cervus nippon) using PCR amplification of the Sry gene. Journal of Veterinary Medical Science. Vol. 60, No. 6, pp: 713-716.
  23. Torbatinejad, N. and Razmazar, V., 2011. Principles of deer farming (first ed.) Gorgan University of Agricultural Sciences & Natural Resources, Gorgan, Iran. 100 p.
  24. Tolleson, D.; Osborn, R.; Neuendorff, D.; Greyling, M.; Randel, R.; Stuth, J. and Ginnett, T., 2001. Determination of gender in four wildlife species by near infrared reflectance spectroscopy of feces. In: Proceedings of the Texas Chapter, Wildlife society meeting, College Station, Texas, 25-27 March.
  25. Ventrella, D.; Elmi, A.; Barone, F.; Carnevali, G.; Govoni, N. and Bacci, M., 2018. Hair testosterone and cortisol concentrations in pre-and post-rut roe deer bucks: Correlations with blood levels and testicular morphometric parameters. Animals. Vol. 8, pp: 113.
  26. Villesen, P. and Fredsted, T., 2006. A new sex identification tool: one primer pair can reliably sex ape and monkey DNA samples. Conserv Genet. Vol. 7, pp: 455-459.
  27. Werren, J.H. and Beukeboom, L.W., 1998. Sex determination, sex ratios, and genetic conflict. Annual Review of Ecolo y and Systematics. Vol. 29, pp: 233-261.
  28. Wilson, P.J. and White, B.N., 1998. Sex identification of elk (Cervus elaphus canadensis), moose (Alces alces), and white-tailed deer (Odocoileus virginianus) using the polymerase chain reaction. Journal of Forensic Science. Vol. 43, No. 3, pp: 477-82.
  29. Yamauchi, K.; Hamasaki, S.I.; Miyazaki, K.; Kikusui, T.; Takeuchi, Y. and Mori, Y., 2000. Sex Determination based on fecal DNA analysis of the amelogenin gene in sika deer (Cervus nippon). Journal of Veterinary Medical Science. Vol. 62, No. 6, pp: 669-671.