پایش زیستی رودخانه گاماسیاب با استفاده از بیومارکرهای آنزیم استیل کولین استراز و پروتئین متالوتیونین در دو گونه ماهی قزل آلا و کپور معمولی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، دانشکده محیط زیست و منابع طبیعی، دانشگاه ملایر، ملایر، ایران

2 گروه محیط زیست، دانشکده جغرافیا و علوم محیطی، دانشگاه حکیم سبزواری، سبزوار، ایران

10.22034/aej.2022.357769.2869

چکیده

پروتئین متالوتیونین و آنزیم استیل کولین استراز از مهم ترین زیست‌نشانگرها در ارزیابی سلامت بوم‌سازگان‌های آبی هستند و به عنوان یکی از سازوکارهای دفاعی آبزیان در مواجهه با انواع آلاینده‌ها معرفی شده‌اند. لذا هدف از این مطالعه ارزیابی و پایش زیستی آلودگی‌های آلی و معدنی رودخانه گاماسیاب با استفاده از بیومارکرهای آنزیم استیل کولین استراز و پروتئین متالوتیونین در دو گونه ماهی قزل‌آلا رنگین کمان (Onchorhynchus mykiss) و کپور معمولی (Cyprinus carpio) بود. نمونه‌برداری از پنج مزرعه پرورش ماهی قزل‌آلای رنگین کمان و هشت مزرعه ماهی کپور در طول رودخانه گاماسیاب انجام شد و نمونه‌ها سریعا در ازت مایع منجمد و به آزمایشگاه منتقل شدند. اندازه‌گیری میزان متالوتیونین (MT) بر اساس روش اسپکتروفتومتری و آنالیز آنزیم کولین استراز (AchE) در مغز ماهی بر اساس روش المن انجام شد. یافته‌ها نشان داد که بین مکان‌های مختلف نمونه‌برداری از حیث میانگین مقادیر و اثرات AchE و MT در دو گونه ماهی اختلاف معنی‌دار آماری وجود داشت (0/05>P). به‌علاوه، میانگین مقادیر کل AchE و MT در ماهی کپور به ترتیب برابر با µm/min/g 3/42 و µg/g 707/75 و در ماهی قزل آلای رنگین کمان نیز به ترتیب برابر با µm/min/g 1/33 و µg/g 3105/7 بودند که مقایسه میانگین میزان AchE و MT بین دو گونه ماهی کپور و قزل آلای رنگین کمان نشان داد میزان MT در ماهی قزل آلای رنگین کمان بیش تر از کپور، و میزان فعالیت AchE در ماهی کپور بیش تر از گونه قزل آلای رنگین کمان بوده است. این تفاوت‌ بین گونه‌ای در میزان زیست نشانگرهای MT و AchE می‌تواند ناشی از مواجهه گونه‌های ماهی‌ در معرض سطوح متفاوت آلاینده به دلیل اختلاف در عادت تغذیه و رفتار آن ها و نیز تفاوت در نقاط نمونه برداری با شرایط محیطی و همچنین ورود منابع آلاینده متفاوت باشد. در مطالعه حاضر کاربرد و ادغام 2 مورد از نشانگرهای زیستی اختصاصی برای بررسی حضور و تاثیرات دو گروه از آلاینده‌های آلی و معدنی در رودخانه گاماسیاب بدون انجام هیچ نوع سنجش شیمیایی مشخص شد. به عبارتی رودخانه گاماسیاب به دلیل وسعت و پراکندگی کاربری‌های مختلف انسانی در حاشیه آن در معرض مستقیم ورود هم‌زمان آلاینده‌های آلی و معدنی است که این موضوع می‌تواند با ردیابی بیومارکرهای اختصاصی در گونه‌های شاخص (از جمله گونه‌های قزل‌آلای رنگین کمان و کپور) مبنایی برای پایش آلودگی بوم‌سازگان باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Bimonitoring of Gamasiab River using Biomarkers of acetylcholinesterase enzyme and metallothionein in two species of salmon and common carp.

نویسندگان [English]

  • Issac Shokrisafa 1
  • Nasrin Hassanzadeh 1
  • Hassan Malvandi 2
1 Department of Environment, Faculty of Environment and Natural Resources, Malayer University, Malayer, Iran
2 Department of Environment, Faculty of Geography and Environmental Sciences, Hakim Sabzevari University, Sabzevar, Iran
چکیده [English]

 Metallothionein protein and acetylcholinesterase enzyme are among the most important biomarkers in evaluating the health of aquatic ecosystems and have been introduced as one of the defense mechanisms of aquatic organisms in the face of various pollutants. Therefore, the aim of this study was to evaluate and biologically monitor the organic and mineral pollution of Gamasyab River using the biomarkers of acetylcholinesterase enzyme and metallothionein protein in two species of rainbow (Onchorhynchus mykiss) and common carp (Cyprinus carpio). Sampling was done from five rainbow trout farms and eight common carp farms along the Gamasiab River, and the samples were quickly frozen in liquid nitrogen and transported to the laboratory. The amount of metallothionein (MT) was measured based on spectrophotometric method and the analysis of cholinesterase enzyme (AchE) in fish brain was performed based on Elman's method. The findings showed that there was a statistically significant difference between different sampling locations in terms of the average values and effects of AchE and MT in two fish species (P<0.05). In addition, the average values of total AchE and MT in carp fish are equal to 3.42 µm/min/g and 707.75 µg/g, respectively, and in rainbow trout it is equal to 1.33 µm/min/g and µg, respectively. /g were 3105.7 and the comparison of the average amount of AchE and MT between two species of carp and rainbow trout showed that the amount of MT in rainbow salmon is higher than that of carp, And the amount of AchE activity in carp was higher than that of rainbow trout. The differences in the level of MT and AchE biomarkers can be caused by exposure of fish species exposed to different levels of pollutants due to differences in their feeding habits and behavior as well as differences in sampling points with environmental conditions and the entry of polluting sources are different. In this study, the application of 2 specific biomarkers to investigate the presence and effects of two groups of organic and inorganic pollutants in the Gamasiab River were determined without conducting any type of chemical analysis. directly exposed to the simultaneous entry of organic and mineral pollutants due to the extent and dispersion of different human uses on its margins, which can be detected by tracking specific biomarkers in indicator species (including rainbow trout and carp) to be a basis for monitoring the pollution of ecosystems.

کلیدواژه‌ها [English]

  • Biomarker
  • Biological response
  • Cholinesterase
  • Pollutant
  • Aquatic ecosystems
  1. Pan, B., Yuan, J., Zhang, X., Wang, Z., Chen, J., Lu, J., Yang, W., Li, Z., Zhao, N. and Xu, M., 2016. A review of ecological restoration techniques in fluvial rivers. International Journal of Sediment Research. 31(2): 110-119.
  2. Pathiratne, K.S.R.A., 2018. Biomarker responses of Nile Tilapia (Oreochromis niloticus) exposed to polluted water from Kelani River basin, Sri Lanka: Implications for biomonitoring river pollution. Sri Lanka J. Aquat. Sci. 23(1): 105-117.
  3. Dalu, T. and Froneman, P.W., 2016. Diatom-based water quality monitoring in southern Africa: challenges and future prospects. Water SA. 42(4): 551-559.
  4. Colin, N., Porte, C., Fernandes, D., Barata, C., Padrós, F., Carrassón, M., Monroy, M., Cano-Rocabayera, O., De Sostoa, A., Piña, B. and Maceda-Veiga, A., 2016. Ecological relevance of biomarkers in monitoring studies of macro-invertebrates and fish in Mediterranean rivers. Science of the Total Environment. 540: 307-323.
  5. Fent, K., 2004. Pharmaceuticals in the Environment. Effects of Pharmaceuticals on Aquatic Organisms. 175-203.
  6. Ballesteros, M.L., Rivetti, N.G., Morillo, D.O., Bertrand, L., Amé, M.V. and Bistoni, M.A., 2017. Multi-biomarker responses in fish (Jenynsia multidentata) to assess the impact of pollution in rivers with mixtures of environmental contaminants. Science of the Total Environment. 595: 711-722.
  7. Vieira, C.E.D., Costa, P.G., Cabrera, L.C., Primel, E.G., Fillmann, G., Bianchini, A. and dos Reis Martinez, C.B., 2017. A comparative approach using biomarkers in feral and caged Neotropical fish: Implications for biomonitoring freshwater ecosystems in agricultural areas. Science of the Total Environment. 586: 598-609.
  8. Viarengo, A., Lowe, D., Bolognesi, C., Fabbri, E. and Koehler, A., 2007. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. 146(3): 281-300.
  9. Van der Oost, R., Beyer, J. and Vermeulen, N.P., 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental toxicology and pharmacology. 13(2): 57-149.
  10. Hook, S.E., Gallagher, E.P. and Batley, G.E., 2014. The role of biomarkers in the assessment of aquatic ecosystem health. Integrated environmental assessment and management. 10(3): 327-341.
  11. Da Cuna, R.H., Vazquez, G.R., Piol, M.N., Guerrero, N.V., Maggese, M.C. and Nostro, F.L.L., 2011. Assessment of the acute toxicity of the organochlorine pesticide endosulfan in Cichlasoma dimerus (Teleostei, Perciformes). Ecotoxicology and Environmental Safety. 74(4): 1065-1073.
  12. Pundir, C.S. and Malik, A., 2019. Bio-sensing of organophosphorus pesticides: A review. Biosensors and Bioelectronics. 140: 111348.
  13. Caliani, I., Rodríguez, L.P., Casini, S., Granata, A., Zagami, G., Pansera, M., Querci, G. and Minutoli, R., 2019. Biochemical and genotoxic biomarkers in Atherina boyeri to evaluate the status of aquatic ecosystems. Regional Studies in Marine Science. 28: 100566.
  14. Severo, E.S., Marins, A.T., Cerezer, C., Costa, D., Nunes, M., Prestes, O.D., Zanella, R. and Loro, V.L., 2020. Ecological risk of pesticide contamination in a Brazilian river located near a rural area: a study of biomarkers using zebrafish embryos. Ecotoxicology and Environmental Safety. 190: 110071.
  15. Nephale, L.E., Moyo, N.A. and Rapatsa, M.M., 2021. Use of biomarkers in monitoring pollution status of urban rivers, Limpopo, South Africa. Environmental Science and Pollution Research. 28(39): 55116-55128.
  16. Kumar, N., Bhushan, S., Gupta, S.K., Kumar, P., Chandan, N.K., Singh, D.K. and Kumar, P., 2021. Metal determination and biochemical status of marine fishes facilitate the biomonitoring of marine pollution. Marine Pollution Bulletin. 170: 112682.
  17. Linde-Arias, A.R., Inácio, A.F., Novo, L.A., de Alburquerque, C. and Moreira, J.C., 2008. Multibiomarker approach in fish to assess the impact of pollution in a large Brazilian river, Paraiba do Sul. Environmental pollution. 156(3): 974-979.
  18. Jebali, J., Sabbagh, M., Banni, M., Kamel, N., Ben-Khedher, S., M’hamdi, N. and Boussetta, H., 2013. Multiple biomarkers of pollution effects in Solea solea fish on the Tunisia coastline. Environmental Science and Pollution Research. 20(6): 3812-3821.
  19. Gabriel, F.Â., Hauser-Davis, R.A., Soares, L., Mazzuco, A.C.A., Rocha, R.C.C., Saint Pierre, T.D., Saggioro, E., Correia, F.V., Ferreira, T.O. and Bernardino, A.F., 2020. Contamination and oxidative stress biomarkers in estuarine fish following a mine tailing disaster. Peer J. 8: e10266.
  20. Tayebi, L. and Sobhan Ardakani, S., 2012. Measurement of water quality parameters and factors Gamasiab. Journal of Environmental Science and Technology. 14(2): 37-49. (In Persian)
  21. Bioukani, S., Amini, Sh. and Sarkhosh, J., 2011. The Study of Fishes in Gamasiab River of the Kermanshah Province and the Effect of Pollution on Their Dispersion. Journal of Animal Biology. 3(4): 15-28. (In Persian)
  22. Karami, M., Mirdar Harijani, J., Gharaei, A. and Pouria, M., 2017. Assessment of water quality of Gamasiab River using BMWP and ASPT Indices. Journal of Aquatic Ecology. 7 (1) :29-38. (In Persian)
  23. Jafari, N., Hafezparast, M. and Farhadi, B., 2022. Qualitative evaluation of water resources for drinking and agricultural uses (Case study: Gamasiab catchment, Kermanshah province). Journal of Environmental Science Studies. 6(2): 3525-3532. (In Persian)
  24. Azimi, A., Safahieh, A., Dadollahi Sohrab, A., Zolgharnein, H., Saffar, B. and Savari, A., 2012. Assessment of Metallothionein as a Biomarker of Heavy Metal (Hg, Cd, Pb and Cu) in Oyster Crassostrea gigas in Imam Khomeini Port. Journal of Oceanography. 3(9) :27-39. (In Persian)
  25. Correia, M.I.T.D. and Campos, A.C.L., 2003. ELAN Cooperative Study. Prevalence of hospital malnutrition in Latin America the multicenter ELAN study. Nutrition. 19: 823-825.
  26. Ellman, G.L., Courtney, K.D., Andres Jr, V. and Featherstone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology. 7(2): 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  27. Fulton, M.H. and Key, P.B., 2001. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environmental Toxicology and Chemistry: An International Journal. 20(1): 37-45.
  28. Jebali, J., Banni, M., Gerbej, H., Boussetta, H., López-Barea, J. and Alhama, J., 2008. Metallothionein induction by Cu, Cd and Hg in Dicentrarchus labrax liver: assessment by RP-HPLC with fluorescence detection and spectrophotometry. Marine Environmental Research. 65(4): 358-363.
  29. Ghedira, J., Jebali, J., Bouraoui, Z., Banni, M., Chouba, L. and Boussetta, H., 2009. Acute effects of chlorpyryphos-ethyl and secondary treated effluents on acetylcholinesterase and butyrylcholinesterase activities in Carcinus maenas. Journal of Environmental Sciences. 21(10): 1467-1472.
  30. Sayed Hassani, M.H., Sajjadi, M.M., Falahatkar, B., Ayoub, Y.j., Monsef Shokri, M., Alipour Jprshari, A.R. and Yganeh, H., 2022. The effect of replacing fish meal with plant and animal composition on growth indices, hematology and hepatic enzymes of Huso huso. Journal of Animal Environment. 14(1): 169-178. (In Persian)
  31. Aliyazdi, M., Sadeghi, P. and Attaran Fariman, G., 2022. Investigation of the relationship between heavy metals (Lead, Nickel, Cadmium) bioaccumulation and levels of catalase and superoxide dismutase enzymes in the tissue of rocky oyster (Saccostrea cucullata) of the Oman Sea. Journal of Animal Environment. 14(1): 311-320. (In Persian)
  32. Rodriguez-Cea, A., Arias, A.L., de la Campa, M.F., Moreira, J.C. and Sanz-Medel, A., 2006. Metal speciation of metallothionein in White Sea catfish, Netuma barba, and pearl cichlid, Geophagus brasiliensis, by orthogonal liquid chromatography coupled to ICP-MS detection. Talanta. 69(4): 963-969.
  33. Lionetto, M.G., Caricato, R., Calisi, A., Giordano, M.E. and Schettino, T., 2013. Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. BioMed research international. 321213.
  34. Froment, J., Langford, K., Tollefsen, K.E., Bråte, I.L.N., Brooks, S.J. and Thomas, K.V., 2016. Identification of petrogenic produced water components as acetylcholine esterase inhibitors. Environmental Pollution. 215: 18-26.
  35. Lionetto, M.G., Caricato, R. and Giordano, M.E., 2019. Pollution biomarkers in environmental and human biomonitoring. The Open Biomarkers Journal. 9(1).
  36. Connell, L.J., Jansen van Rensburg, G.R., Avenant-Oldewage, A. and Greenfield, R., 2020. Biomarker responses in African sharptooth catfish, Clarias gariepinus (Burchell, 1822), as indicators of potential metal and organic pollution along the Vaal River system, South Africa. African Journal of Aquatic Science. 45(3): 317-328.
  37. Moyo, N.A.G. and Rapatsa, M.M., 2016. Impact of urbanization on the ecology of Mukuvisi River, Harare, Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C. 92: 14-19.
  38. Gerber, R., Smit, N.J., van Vuren, J.H., Ikenaka, Y. and Wepener, V., 2018. Biomarkers in tigerfish (Hydrocynus vittatus) as indicators of metal and organic pollution in ecologically sensitive subtropical rivers. Ecotoxicology and Environmental Safety. 157: 307-317.
  39. Dantas, D.V., Ribeiro, C.I., Frischknecht, C.D.C., Machado, R. and Farias, E.G., 2019. Ingestion of plastic fragments by the Guri Sea catfish Genidens genidens (Cuvier, 1829) in a subtropical coastal estuarine system. Environmental Science and Pollution Research. 26(8): 8344-8351.
  40. Andrades, R., Guabiroba, H.C., Hora, M.S., Martins, R.F., Rodrigues, V.L., Vilar, C.C., Giarrizzo, T. and Joyeux, J.C., 2020. Early evidences of niche shifts in estuarine fishes following one of the T world's largest mining dam disasters. Marine pollution bulletin. 154: 111073.
  41. Cline, J.M., East, T.L. and Threlkeld, S.T., 1994. Fish interactions with the sediment-water interface. In Nutrient dynamics and biological structure in shallow freshwater and brackish lakes. Springer, Dordrecht. 301-311.
  42. Bustamante, P., Bocher, P., Cherel, Y., Miramand, P. and Caurant, F., 2003. Distribution of trace elements in the tissues of benthic and pelagic fish from the Kerguelen Islands. Science of the total environment. 313(1-3): 25-39
  43. Pourang, N. and Dennis, J.H., 2005. Distribution of trace elements in tissues of two shrimp species from the Persian Gulf and roles of metallothionein in their redistribution. Environment International. 31(3): 325-341.
  44. Coetzee, L., Du Preez, H.H. and Van Vuren, J.H.J., 2002. Metal Concentration in Clarias gariepinus and Labeo umbratus from the Olifants and Klein Olifant River, Mpumalanga, South Africa: Zinc, copper manganese, lead, chromium, nickel, aluminium and iron. Rand Afrikaans University, South Africa. 16 p.
  45. Mormede, S. and Davies, I.M., 2001. Trace elements in deep-water fish species from the Rockall Trough. Fisheries Research. 51(2-3): 197-206.
  46. Nikouyan, A., 2003. Hydrology and hydrobiology of northern part of the Persian Gulf. Iranian Fisheries Research Institute Publication. 128 p.
  47. Karmi, M., Ebrahimzadeh, M.A. and Masrour, Y., 2004. Measurement of cholinesterase enzyme activity in the brain of carp fish in marine and cultured types as an indicator of the health of these fish. Scientific Journal of Kurdistan University of Medical Sciences. 6(3): 23-38. (In Persian)
  48. Chuiko, G.M., Podgornaya, V.A. and Zhelnin, Y.Y., 2003. Acetylcholinesterase and butyrylcholinesterase activities in brain and plasma of freshwater teleosts: cross-species and cross-family differences. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology. 135(1): 55-61.
  49. Hart, G.J., 1975. Organophosphorus pesticides: Organic and biological chemistry: M. Eto, CRC Press, Cleveland, OH. 387 p.
  50. Lindeman, V.F., 1945. A comparative study of the cholinesterase activity of the vertebrate nervous system, with especial reference to its relationship to motor ability. American Journal of Physiology-Legacy Content. 143(5): 687-691.
  51. Leibson, N.L., 1963. Brain acetylcholinesterase in phylogenesis of vertebrates. DOKLADY AKADEMII NAUK SSSR. 153(6): 1435.
  52. Pavan, K.I., Rajarami, R.G., Vilayakshmi, S. and Sasora, B.K., 1979. Cyclical acetylcholinesterase activity in diurnal Calotes memoricola and nocturnal Mus booduqa. Journal of Interdisciplinary Cycle Research. 10(2): 139-144.
  53. Manteifel, B.P., 1980. Ecological Behavior of Animals. Nauka, Moscow. (In Russian)