بررسی اثر سطوح مختلف سین بیوتیک بایومین ایمبو بر شاخص‌های رشد، تغذیه و بازماندگی بچه ماهی سیکلید ترور سبز Andinoacara rivulatus

نوع مقاله : تغذیه


1 گروه شیلات، دانشکده دامپزشکی، واحد بابل، دانشگاه آزاد اسلامی، بابل، ایران

2 گروه دامپزشکی، دانشکده دامپزشکی، دانشگاه آزاد اسلامی واحد بابل، ایران

3 گروه شیلات، دانشکده کشاورزی و منابع طبیعی، واحد آزادشهر، دانشگاه آزاد اسلامی، آزادشهر، ایران


این پژوهش به ­منظور ارزیابی تأثیر سطوح متفاوت سین بیوتیک بایومین ایمبو بر شاخص ­های رشد، تغذیه و بازماندگی در بچه ماهیان سیکلید گرین ترور Andinoacara rivulatus به مدت 60 روز انجام گرفت. آزمایش با استفاده از طرح کاملاٌ تصادفی شامل سطوح صفر (شاهد)، 0/5، 1 و 1/5 گرم سین بیوتیک به ازای هر کیلوگرم جیره در قالب چهار تیمار با سه تکرار طراحی شد. آزمایش درون آکواریوم­ های 200 لیتری که با 170 لیتر آب پر شده بود انجام گرفت. تعداد 10 عدد بچه ­ماهی­ هم وزن در هر مخزن ذخیره ­سازی و تا حد­ سیری تغذیه شدند. بر اساس نتایج میزان افزایش وزن بدن، درصد افزایش وزن بدن، نرخ رشد ویژه و نسبت کارائی پروتئین تغذیه شده با سطح 1/5 گرم در کیلوگرم سین بیوتیک از پیشرفت معنی داری نسبت به سایر  تیمارها برخوردار بود (0/05>P). هم ­چنین میزان فاکتور وضعیت افزایش معنی ­داری را در تیمار 0/5 گرم در کیلوگرم سین بیوتیک از خود نشان داد (0/05>P). از نظر بازماندگی، هیچ تلفاتی در بین تیمار­ها مشاهده نگردید. با توجه به نتایج مطالعه حاضر می ­توان چنین استنباط نمود که افزودن سین بیوتیک به جیره غذایی به خصوص در سطح 1/5 گرم در کیلوگرم می تواند در برخی از فاکتور­های رشد و تغذیه بچه ماهیان سیکلید گرین ترور موثر واقع شود و به ­عنوان یک مکمل مناسب برای جیره غذایی این گونه مد نظر قرار گیرد.


عنوان مقاله [English]

Effect of Different Levels of Biomin Imbo Synbiotic on Growth Indices, Feeding Factors and Survival Rate of Green Terror (Andinoacara rivulatus)

نویسندگان [English]

  • Reza Changizi 1
  • Hamed Manouchehri 1
  • Mehdi Hosseinifard 2
  • Zahra Ghiasvand 3
1 Department of Fisheries, Faculty of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran
2 Department of Veterinary Medicine, Faculty of Veterinary Medicine, Islamic Azad University, Babol Branch, Iran
3 Department of Fisheries, Faculty of Agriculture and Natural Resources, Azadshahr Branch, Islamic Azad University, Azadshahr, Iran
چکیده [English]

This research was carried out to evaluate the effects of different levels of Siberian Bimini Immo on growth, nutrition and survival indices in Green Terror fish (Andinoacara rivulatus) for 60 days. The experiment was designed by using randomized method including control, 0.5, 1 and 1.5 g of Biomin Imbo synbiotic per kg of diet in four treatments with three replications. Based on the results, BWI, PBWI, SGR, and PER and FCR in 1.5 g / kg synbiotic had a significant improvement compared to other treatments (P <0.05). Also, the amount of CF significantly increased in treatment of 0.5 g / kg synbiotic (P <0.05). In terms of survival, no casualties were observed among treatments. According to the results of this study, it can be concluded that the addition of synbiotic to diet, especially at 1.5 g / kg, can be effective in some of the growth and feeding factors of Green Terror fish, and as a supplement Suitable for the diet of this species.

کلیدواژه‌ها [English]

  • Synbiotic (Biomin Imbo)
  • Growth
  • Survival rate
  • Greenterror cichlid
  1. Ai, Q.; Mai, K.; Tan, B.; Xu, W.; Duan, Q.; Ma, H. and Zhang, L., 2006. Replacement of fish meal by meat and bone meal in diets for large yellow croaker, Pseudosciaena crocea. Aquaculture. Vol. 260, pp: 255-263.
  2. Azimirad, M.; Meshkini, S.; Ahmadifard, N. and Hoseinifar, S.H., 2016. The effects of feeding with synbiotic (Pediococcus acidilactici and fructooligosaccharide) enriched adult Artemia on skin mucus immune responses, stress resistance, intestinal microbiota and performance of angelfish (Pterophyllum scalare). Fish and Shellfish Immunology. Vol. 54, pp: 516-522.
  3. Biondo, M.V., 2017. Quantifying the trade in marine ornamental fishes into Switzerland and an estimation of imports from the European Union. Global Ecology and Conservation. Vol. 11, pp: 95-105.
  4. Brunt, K. and Sanders, P., 2013. Improvement of the AOAC 2009.01 total dietary fibre method for bread and other high starch containing matrices. Food Chemistry. Vol. 140, pp: 574-580.
  5. Cerezuela, R.; Guardiola, F.A.; Meseguer, J. and Esteban, M.Á., 2012. Increases in immune parameters by inulin and Bacillus subtilis dietary administration to gilthead seabream (Sparus aurata L.) did not correlate with disease resistance to Photobacterium damselae. Fish & Shellfish Immunology. Vol. 32, pp: 1032-1040.
  6. Cervino, J.M.; Hayes, R.L.; Honovich, M.; Goreau, T.J.; Jones, S. and Rubec, P.J., 2003. Changes in zooxanthellae density, morphology, and mitotic index in hermatypic corals and anemones exposed to cyanide. Marine Pollution Bulletin, Vol. 46, pp: 573-586.
  7. Chen, H.; Liu, S.; Xu, X.R.; Diao, Z.H.; Sun, K.F.; Hao, Q.W.; Liu, S.S. and Ying, G.G., 2018. Tissue distribution, bioaccumulation characteristics and health risk of antibiotics in cultured fish from a typical aquaculture area. Journal of Hazardous Materials. Vol. 343, pp: 140-148.
  8. Geraylou, Z.; Souffreau, C.; Rurangwa, E.; D'Hondt, S.; Callewaert, L.; Courtin, C.M.; Delcour, J.A.; Buyse, J. and Ollevier, F., 2012. Effects of arabinoxylan oligosaccharides (AXOS) on juvenile Siberian sturgeon (Acipenser baerii) performance, immune responses and gastrointestinal microbial community. Fish and Shellfish Immunology. Vol. 33, pp: 718-724.
  9. Hamid, S.N.I.N.; Abdullah, M.F.; Zakaria, Z.; Yusof, S.J.H.M. and Abdullah, R., 2016. Formulation of Fish Feed with Optimum Protein-bound Lysine for African Catfish (Clarias Gariepinus) Fingerlings. Procedia Engineering. Vol. 148, pp: 361-369.
  10. Hoseinifar, S.H.; Dadar, M. and Ringø, E., 2017. Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: The functional feed additives scenario. Aquaculture Research. Vol. 48, pp: 3987-4000.
  11. Hoseinifar, S.H.; Mirvaghefi, A.; Mojazi Amiri, B., Rostami, H.K. and Merrifield, D.L., 2011. The effects of oligofructose on growth performance, survival and autochthonous intestinal microbiota of beluga (Huso huso) juveniles. Aquaculture Nutrition. Vol. 17, pp: 498-504.
  12. Hoseinifar, S.H.; Ringø, E.; Shenavar Masouleh, A. and Esteban, M.Á., 2016. Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Reviews in Aquaculture. Vol. 8, pp: 89-102.
  13. Hu, L.; Yun, B.; Xue, M.; Wang, J.; Wu, X.; Zheng, Y. and Han, F., 2013. Effects of fish meal quality and fish meal substitution by animal protein blend on growth performance, flesh quality and liver histology of Japanese seabass (Lateolabrax japonicus). Aquaculture. pp: 372-375, 52-61.
  14. Huynh, T.G.; Cheng, A.C.; Chi, C.C.; Chiu, K.H. and Liu, C.H., 2018. A synbiotic improves the immunity of white shrimp, Litopenaeus vannamei: Metabolomic analysis reveal compelling evidence. Fish & Shellfish Immunology. Vol. 79, pp: 284-293.
  15. Huynh, T.G.; Shiu, Y.L.; Nguyen, T.P.; Truong, Q.P.; Chen, J.C. and Liu, C.H., 2017. Current applications, selection, and possible mechanisms of actions of synbiotics in improving the growth and health status in aquaculture: A review. Fish & Shellfish Immunology. Vol. 64, pp: 367-382.
  16. Kumar, P.; Jain, K.K. and Sardar, P., 2018. Effects of dietary synbiotic on innate immunity, antioxidant activity and disease resistance of Cirrhinus mrigala juveniles. Fish & Shellfish Immunology. Vol. 80, pp: 124-132.
  17. Liu, S.; Bekele, T.G.; Zhao, H.; Cai, X. and Chen, J., 2018. Bioaccumulation and tissue distribution of antibiotics in wild marine fish from Laizhou Bay, North China. Science of The Total Environment. pp: 631-632, 1398-1405.
  18. Luo, L.; Li, T.; Xing, W.; Xue, M.; Ma, Z.; Jiang, N. and Li, W., 2015. Effects of feeding rates and feeding frequency on the growth performances of juvenile hybrid sturgeon, Acipenser schrenckii Brandt♀×A. baeri Brandt♂. Aquaculture. Vol. 448, pp: 229-233.
  19. Mahghani, F.; Gharaei, A.; Ghaffari, M. and Akrami, R., 2016. Dietary synbiotic improves the growth performance, survival and innate immune response of Gibel carp (Carassius auratus gibelio) juveniles. International Journal of Aquatic Biology. Vol. 2, pp: 99-104.
  20. Mehrabi, Z.; Firouzbakhsh, F. and Jafarpour, A., 2012. Effects of dietary supplementation of synbiotic on growth performance, serum biochemical parameters and carcass composition in rainbow trout (Oncorhynchus mykiss) fingerlings. Journal of Animal Physiology and Animal Nutrition. Vol. 96, pp: 474-481.
  21. Montajami, S.; Hajiahmadyan, M.; Forouhar Vajargah, M.; Sadat, A.; Zarandeh, H.; Shirood Mirzaie, F. and Abbas Hosseini, S., 2012. Effect of Synbiotic (Biomin imbo) on Growth Performance and Survival Rate of Texas Cichlid (Herichthys cyanoguttatus) Larvae.
  22. Mouriño, J.L.P.; Pereira, G.D.V.; Vieira, F.D.N.; Jatobá, A.B.; Ushizima, T.T.; Silva, B.C.D.; Seiffert, W.Q.; Jesus, G.F.A. and Martins, M.L., 2016. Isolation of probiotic bacteria from the hybrid South American catfish Pseudoplatystomareticulatum×Pseudoplatystoma corruscans (Siluriformes: Pimelodidae): A haematological approach. Aquaculture Reports. Vol. 3, pp: 166-171.
  23. Nosratpur, A.; Kamali, A. and Akrami, R., 2013. Effects of Immunogen Supplementation on Growth Index, Survival and Body Composition of the Pacific white Shrimp (Litopenaeus Vannamei) Journal of Renewable Natural Resources Research. Vol. 2, pp: 1-8.
  24. Rodriguez, U.; Satoh, S.; Haga, Y.; Fushimi, H. and Sweetman, J., 2013. Effects of Inactivated Enterococcus faecalis and Mannan Oligosaccharide and Their Combination on Growth, Immunity, and Disease Protection in Rainbow Trout.
  25. Santos, M.A.; Jerônimo, G.T.; Cardoso, L.; Tancredo, K.R.; Medeiros, P.B.; Ferrarezi, J.V.; Gonçalves, E.L.T.; da Costa Assis, G. and Martins, M.L., 2017. Parasitic fauna and histopathology of farmed freshwater ornamental fish in Brazil. Aquaculture. Vol. 470, pp: 103-109.
  26. Souza, S.O.; Pereira, T.R.S.; Ávila, D.V.L.; Paixão, L.B.; Soares, S.A.R.; Queiroz, A.F.S.; Pessoa, A.G.G.; Korn, M.D.G.A.; Maranhão, T.A. and Araujo, R.G.O., 2018. Optimization of sample preparation procedures for evaluation of the mineral composition of fish feeds using ICP-based methods. Food Chemistry.
  27. Talebi Haghighi, D.; Fallahi, M. and Abdollahtabar, Y., 2012. The effect of different levels of Biomin Imbo synbiotic on growth and, survival of Rutilus frisii kutum fry. Journal of Fisheries of Islamic Azad University, Azadshahr Branch. Vol. 4, pp: 1-15.
  28. Wang, X.; Sun, Y.; Wang, L.; Li, X.; Qu, K. and Xu, Y., 2017. Synbiotic dietary supplement affects growth, immune responses and intestinal microbiota of Apostichopus japonicus. Fish & Shellfish Immunol. Vol. 68, pp: 232-242.
  29. Whittington, R.J. and Chong, R., 2007. Global trade in ornamental fish from an Australian perspective: The case for revised import risk analysis and management strategies. Preventive Veterinary Medicine. Vol. 81, pp: 92-116.
  30. Xue, M.; Luo, L.; Wu, X.; Ren, Z.; Gao, P.; Yu, Y. and Pearl, G., 2006. Effects of six alternative lipid sources on growth and tissue fatty acid composition in Japanese sea bass (Lateolabrax japonicus). Aquaculture. Vol. 260, pp: 206-214.
  31. YE, J.D.; Wang, K.; LI, F.D. and Sun, Y.Z., 2014. Single or combined effects of fructo- and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder Paralichthys olivaceus. Aquaculture Nutrition. Vol. 17, pp: e902-e911.