عملکرد سطوح مختلف نانو ذرات اکسیدروی (ZnO NPs) بر میزان آنزیم های آنتی اکسیدانی کبد در ماهی کوی

نوع مقاله: فیزیولوژی (جانوری)

نویسندگان

1 ﮔﺮوه ﺷﯿﻼت، داﻧﺸﮑﺪه ﻋﻠﻮم و ﻓﻨﻮن درﯾﺎﯾﯽ، واﺣﺪ تهران ﺷﻤﺎل، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﯽ، تهران، ایران

2 ﮔﺮوه ﺷﯿﻼت، داﻧﺸﮑﺪه ﻋﻠﻮم و ﻓﻨﻮن درﯾﺎﯾﯽ، واﺣﺪ تهرانﺷﻤﺎل، داﻧﺸﮕﺎه آزاد اﺳﻼﻣﯽ، تهران، ایران

چکیده

کاربردهای صنعتی پیشرفته نانوذرات (NPs) موجب افزایش احتمال انحلال آن­ ها در اکوسیستم­ های آبی شده و از سویی مصرف آن ­ها توسط موجودات آبزی، قبل ازبین رفتن این ذرات، باعث تهدید زندگی آبزیان شده است. از آن­ جا که نانوذرات ­ها پس از ورورد باعث تغییر مکانیسم­ های طبیعی فیزیولوژیک ماهیان می­ شود، لذا هدف این تحقیق، تاثیر نانوذرات اکسید­روی (0، 1، 2، 4 و 8 میلی ­گرم بر لیتر) ﺑه ­روش ﺳﺎﮐﻦ ﺑﺮ آنزیم ­های آنتی­ اکسیدانی کبد در ماهی کوی(Cyprinus Carpio) در یک دوره 2 و 10 روزه بود. ذرات نانواکسید روی موجب تغییرات معنی ­دار قابل توجهی در آنزیم­ های کبدی شدند  (0/05>p). این تغییرات آنزیم ­های کبدی در پایان روز دهم شامل کاهش سطوح سوپراکسید دسموتاز  SOD) 0/13±92)، گلوتاتیون پراکسیداز GSH-Px)0/27±19/14)، کاتالاز CAT) 0/23±36/21) (نانو مول بر میلی­ گرم پروتئین) و افزایش سطح مالون دی­ آلدئید MDA) 0/97±50/18) (نانو مول بر میلی­ گرم پروتئین) نسبت به گروه شاهد بود که این تغییرات وابسته به­ میزان دوز و مدت زمان در معرض قرار گرفتن ماهیان به نانوذرات بود. این نتایج حاکی از آن است که نانوذرات روی در ﻣﺤﯿﻂ ­ﻫﺎی آﺑﯽ ﺑﺎ ﻏﻠﻈﺖ ­ﻫﺎی مورد مطالعه باعث افزایش استرس اکسیداتیو و اثرات نامناسبی بر آنزیم ­های کبدی داشته و این پارامترها را دﭼﺎر ﺗﻐﯿﯿﺮات ﺷﺪﯾﺪ می ­ﻧﻤﺎﯾﺪ.

کلیدواژه‌ها


  1. ﺷﮑﻮری، م.؛ اﺑﺪاﻟﯽ، س. و ﻧﮕﺎرﺳﺘﺎن، ح.؛ 1391. ﺑﺮرﺳﯽ اﺛﺮ ﺳﻤﯿﺖ روی ﺑﺮ ﺑﺮﺧﯽ از ﭘﺎراﻣﺘﺮﻫﺎی ﺑﯿﻮﺷﯿﻤﯿﺎﯾﯽ ﺧﻮن ﺑﭽﻪﻣﺎﻫﯽ ﻓﯿﺘﻮﻓﺎگ. ﻣﺠﻠﻪ ﭘﮋوﻫﺶ­ﻫﺎی ﻋﻠﻮم و ﻓﻨﻮن درﯾﺎﯾﯽ. سال 9، شماره 3، صفحات 31 تا 39.
  2. Abdel-Khalek, A.; Badran, S. andMarie, M., 2016. Toxicity evaluation of copper oxide bulk and nanoparticles in Nile tilapia, Oreochromis niloticus, using hematological, bioaccumulation and histological biomarkers. Fish Physiology and Biochemistry. Vol. 42, No. 4, pp: 1225-1236.
  3. Almeida, E.A.; Loureiro, G.R.; Marrtinez, S. and Miyamoto, J., 2007. Oxidative stress in Perna perna and other bivalves as indicators of environmental stress in the Brazilian marine environment: Antioxidants, lipid peroxidation and DNA damage. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. Vol. 146,  pp: 588-600.
  4. Bhattacharya, S.; Bhattacharya, A. and Roy, S., 2007. Arsenic-induced responses in freshwater teleost. Fish Physiology and Biochemistry. Vol. 33, pp: 463-473.
  5. Baker, RTM.; Martin, P. and Davis, S.J., 1997. Ingestion of sub-lethal levels of iron sulphate by African catfish affects growth and tissue lipid peroxidation. Aquatic Toxicology. Vol. 40, pp: 51-61.
  6. Borkovic, S.S.; Saponjic, J.S.; Pavlovic, S.Z.; Blagojevic, D.P. andMilos evic, S.M., 2005. The activity of antioxidant defense enzymes in the mussel Mytilus galloprovincialis from the Adriatic Sea. Comp. Biochemistry Physiology. Vol.8, pp: 413-428.
  7. Brand, M.E., 2001. Bioaccumulation of Metals in Labeo Congoro from the Olifants River (Mpumalanga) and the Effect of Nickel on the Hematology of Fish (M.Sc. thesis). Rand Afrikaans Univ.
  8. Brun, NR.; Lenz, M.; Wehrli, B. and Fent, K., 2014. Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: Importance of zinc ions. Science of the Total Environment. Vol. 476-477, pp: 657-666.
  9. Buege, J.A. and Aust, S.D., 1978. Microsomal lipid peroxidation. Methods in enzymology. Vol. 52, pp: 302-310.
  10. Chen, P.J.; Tan, S.W. and Wu, W.L., 2012. Stabilization or oxidation of nanoscale zero valent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Environmental Science Technology. Vol. 46, pp: 8431-8439.
  11. Federici, G.; Shaw, B.J. and Handy, R.D., 2007. Toxicity of titanium dioxide nanoparticles to rainbow trout: Gill injury, oxidative stress, and other physiological effects. Aquatic Toxicology. Vol, 84, pp: 415-430.
  12. Fernandez, D.; Garcia-Gomez, C. and Babin, M., 2013. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells. Science Total Environment. Vol. 452-453, pp: 262-274.
  13. Goth, L., 1991. A simple method for determination of serum catalase activity and revision of reference range. International journal of clinical chemistry. Vol. 196, pp: 143-51.
  14. Gule, I.; Leonard, B. and Holdway, D.A., 1997. Oil and dispersed oil toxicity to amphipods and snails. Spill sciences technology bulletin. Vol. 4, pp: 1-6.
  15. Gu, l.S.; Belge-Kurutas, E.; Yldz, E.; Sahan, A. and Doran, F., 2004. Pollution correlated modifications of liver antioxidant systems and histopathology of fish (Cyprinidae) living in Seyhan Dam Lake, Turkey. Environment. International. Vol. 30, pp: 605-609.
  16. Han, D.; Xie, S.; Liu, M.; Xiao, X.; Liu, H.; Zhu, X. and Yang, Y., 2011. The effects of dietary selenium on growth performances, oxidative stress and tissue selenium concentration of gibel carp (Carassius auratus gibelio). Aquaculture nutrition. Vo. 17, No. 3, pp: 741-749.
  17. Hao, L.; Chen, L.; Hao, J. and Zhong, N., 2013. Bioaccumulation and sub-acute toxicity of Zinc Oxide nanoparticles in juvenile Carp (Cyprinus Carpio). Ecotoxicology and environmental safety. Vol. 91, pp: 52-60.
  18. Khan, M.S.; Jabeen, F.; Qureshi, N.A.; Asghar, M.S.; Shakeel, M. and Noureen, A., 2015. Toxicity of silver nanoparticles in fish: a critical review.  J of Biodiversity and Environmental Sciences. Vol. 6, No. 5, pp: 211-227.
  19. Kappus, H., 1985. Lipid peroxidation: mechanisms, enzymology, and biological relevance in Oxidative Stress, American Press, New York. pp: 273-310.
  20. Kaya, H.; Aydın, F.; Gurkan, M.; Yılmaz, S.; Mehmet Ates, M.; Demir, V. and Arslan, Z., 2015. Effects of zinc oxide nanoparticles on bioaccumulation and oxidative stress in different organs of tilapia. Environmental Toxicology and Pharmacology. Vol. 40, pp: 936-947.
  21. Li, H.; Zhou, Q.; Wu, YFJ.; Wang, T. and Jiang, G., 2009. Effects of waterborne nano-iron on medaka antioxidant enzymatic activity, lipid peroxidation and histopathology. Ecotoxicology & Environmental Safety. Vol. 72, pp: 684-692. 
  22. Livingstone, D.R., 2003. Oxidative stress in aquatic organism in relation to pollution and aquaculture. Revue de medecine veterinaire. Vol. 154, No. 6, pp: 427-430.
  23. Marklund, S.L. and Marklund, G., 1974. Involvement of the superoxide anion radical in the auto oxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal Biochemistry. Vol. 47, pp: 469-474.
  24. Mocan, T.; Clichici, S.; Agoston-Coldea, L.; Mocan, L.; Simon, S. and Ilie, I.R., 2010. Implications of oxidative stress mechanisms in toxicity of nanoparticles (review). Acta Physiologica Hungarica. Vol. 97, pp: 247-255.
  25. Monteiro, D.; Rantin, F. and Kalinin, A., 2010. Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxa, Brycon amazonicus Ecotoxicology. Vol. 19, pp: 105-123.
  26. Nowack, B. and Bucheli, T.D., 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environment Pollution. Vol. 150, pp: 5-22.
  27. Omoregie, E.; Ufodike, E.B. and Keke, I.R., 1990. Tissue chemistry of O. niloticus exposed to sublethal concentrations of Gammalin 20 and Actellic 25EC. Journal of Aquatic Science. Vol. 5, pp: 33-36.
  28. Pandey, S.; Parvez, S.; Sayeed, I.; Haque, R.; Bin-Hafeez, B. and Raisuddin, S., 2003. Biomarkers of oxidative stress: A comparative study of river Yamuna fish Wallago attu. Journal Science Total Environment. Vol. 309, pp: 105-115.
  29. Reed, D.J.; Babson, J.R.; Beatty, P.W.; Brodie, A.E.; Ellis, W.W. and Potter, D.W., 1980. High-performance liquid chromatography analysis of Nano mole levels of glutathione, glutathione disulfide, and related thiols and disulfides. Analytical Biochemistry. Vol. 106, pp: 55-62.
  30. Segets, D.; Gradl, J.; Taylor, R.K.; Vassilev, V. and Peukert, W., 2009. Analysis of optical absorbance spectra for the determination of ZnO nanoparticle size distribution, solubility & surface energy. ACS Nano. Vol. 3, pp: 1703-1710. 
  31. Smith, C.J.; Shaw, B.J. and Handy, R.D., 2007. Toxicity of single walled carbon nanotubes to rainbow trout (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquatic toxicology. Vol. 82, pp: 94-109.
  32. Vijayakumar, T.; Siva, N.D. and Kirubakaran, S.A., 2016. Fate and upshots of Zinc oxide Nano phase as a pollutant in a fresh water fish Tilapia (Oreochromis mossabicus) and its Physiological alterations in Hematology, Antioxidant level and Histology. International Journal Res.Vol. 3, pp: 634-653.
  33. Sen, C.K.; Atalay, M. and Hanninen, O., 1994. Exercise-induced oxidative stress: glutathione supplementation and deficiency. J Apply Physiology. Vol. 77, pp: 2177-2187.
  34. Subashkumar, S. and Selvanayagam M., 2014. First report on: Acute toxicity and gill histopathology of fresh water fish Cyprinus carpio exposed to Zinc oxide (ZnO) nanoparticles. International Journal of Scientific and Research Publications. Vol. 4, pp: 1-4.
  35. Topham, M.K. and Prescott, S.M., 2001. Diacylglycerol kinase zeta regulates Ras activation by a novel mechanism. Journal Cell Biology. Vol. 152, No. 6, pp:1135-1143.
  36. Weldegebriel, Y.; Chandravanshi, B.S. and Wondimu, T., 2012. Concentration levels of metals in vegetables grown in soils irrigated with river water in Addis Abada, Ethiopia. Ecotoxicology Environment. Vol. 77, pp: 57-63.
  37. Winston, G.W. and Di Giulio, R.T., 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquatic Toxicology. Vol. 19, pp: 137-161.
  38. Zhu, S.Q.; Oberdorster, E. and Haasch, M.L., 2006. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Marine Environment. Vol. 62, pp: S5-S9.