مطالعه تنوع و ذخایر ژنتیکی قوچ و میش ارمنی (Ovis orientalis) در شمال غربی ایران با استفاده از تراشه های میکروآرای DNA و توالی کامل ژنوم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه کردستان، سنندج، ایران

2 گروه تنوع زیستی و مدیریت اکوسیستم ها، پژوهشکده علوم محیطی، دانشگاه شهید بهشتی، تهران، ایران

3 گروه محیط‌ زیست، دانشکده منابع طبیعی، دانشگاه گیلان، رشت، ایران

4 گروه محیط زیست، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، ایران

چکیده

قوچ و میش ­های ارمنی (Ovis orientalis) غرب ایران به دلایلی از جمله شکار غیرمجاز و تخریب زیستگاه در فهرست سرخ IUCN  در رده آسیب پذیر قرار گرفته و از سویی به عنوان نیای اجدادی نژادهای اهلی گوسفند (Ovis aries) سراسر دنیا ارزش فراملی دارند. در این مطالعه با استفاده از توالی یابی کل ژنوم و چیپ های BeadChip Ovine SNP 50K تنوع و ذخایر ژنتیکی جمعیت­ های قوچ و میش ارمنی شمال غرب ایران (آذربایجان غربی و شرقی، کردستان، مرکزی، همدان، قزوین) به عنوان خاستگاه اهلی سازی گوسفند، شناسایی و با گوسفند­های اهلی همان مناطق مقایسه شد. تعداد SNP های کل ژنوم، ضریب درون آمیزی و ژنتیک لود بر اساس داده  ­های ژنوم کامل، هم چنین هتروزیگوسیتی مورد انتظار به عنوان پارامترهای مرتبط با تنوع ژنتیکی بین دو گروه اهلی و وحشی مقایسه شدند. براساس نتایج به دست آمده تعداد SNP های تفکیک کننده به عنوان مهم ترین پارامتر تقریباً ۲۴ میلیون برای گروه وحشی­ و در حدود ۲۰ میلیون برای گروه اهلی­ محاسبه شد که اختلاف چشمگیری را نشان داد. با توجه به یافته­ های تنوع نوکلئوتیدی ژنوم، تنوع ژنتیکی بر اساس داده­ های ژنوم کامل در گروه وحشی نسبت به گروه اهلی بیش تر بود. بر اساس نتایج مطالعه حاضر قوچ و میش ارمنی با داشتن میزان بالای تنوع ژنتیکی به عنوان ذخایر ژنتیکی برای نژادهای اهلی تمامی گوسفندان اهلی دنیا ارزش حیاتی دارند و باید در اولویت برنامه های حفاظتی قرار بگیرند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of genetic diversity and genetic resources of mouflon (Ovis orientalis) and its domestic breeds (Ovis aries) in the north-west of Iran based on whole genome sequences and BeadChip Ovine SNP 50K

نویسندگان [English]

  • Wahid Zamani 1
  • Marzieh Asadi Aghbolaghi 2
  • Saeid Naderi 3
  • Hamid Reza Rezaei 4
1 Department of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
2 Department of Biodiversity and Ecosystem Management, Environmental Sciences Research Institute, Shahid Beheshti University, Tehran, Iran
3 Department of Environmental Sciences, Faculty of Natural Resources, University of Guilan, Rasht, Iran
4 Department of Environmental Sciences, Faculty of Fisheries and Environment, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

Iran’s mouflons (Ovis orientalis) populations have been declined in western regions because of poaching and habitat destruction and categorized as vulnerable in IUCN red list, this population as ancestors of domestic sheep (Ovis aries) breeds all around the world has an international importance. In this study, genetic diversity and structure of mouflons in the north-west of Iran (West Azerbaijan, East Azerbaijan, Kurdistan, Markazi, Hamedan and Qazvin) identified and compared with the domestic breeds via whole genome sequencing and BeadChip Ovine SNP 50K Data. Number of SNPs all over the genome, genetic load and inbreeding coefficient based on whole genome data, as well as expected heterozygosity and inbreeding coefficient as genetic diversity parameters based on c BeadChip data have been compared between wild and domestic groups. Number of discriminator SNPs as the most important parameters showed impressive difference and was calculated about 24 million for wilds and 20 million for domestics. According to the findings of nucleotide diversity for the whole genome, genetic diversity based on complete genome data was higher in the wild group than in the domestic group. Based on the results of this study, mouflon (Ovis orientalis) with high levels of genetic diversity as genetic resources for domestic breeds of all domestic sheep in the world are of vital value and should be given priority in conservation programs.

کلیدواژه‌ها [English]

  • Mouflon
  • Genetic diversity
  • Genetic resources
  • Ovis
  1. 1.              Karami, P. and Shayesteh, K., 2018. Investigation of ecological niche of Wild sheep (Ovis oriantalis) in protected areas of Lashgardar-Golparbad, Alvand-Chalkhatoon-Rasvand and Polangab. Journal of Animal Environmental. 10(4): 65-74. (In Persian)

    1. Rezaei, H.R.; Naderi, S.; Chintauan-Marquier, I.C.; Taberlet, P.; Virk, A.T.; Naghash, H.R.; Rioux, D.; Kaboli, M. and Pompanon, F., 2010. Evolution and taxonomy of the wild species of the genus Ovis (Mammalia, Artiodactyla, Bovidae). Molecular phylogenetics and 54(2): 315-326.

    3.              Peters, J.; von den Dreisch, A. and Helmer, D. 2005. The upper Euphrates -Tigris basin: cradle of agro -pastoralism? The first steps of animal domestication: new archaeozoological techniques. 96-124.

    1. Rezaei, H., 2007. Phylogénie moléculaire du Genre Ovis (Mouton et Mouflons), Implications pour la Conservation du Genre et pour l'Origine de l'Espèce Domestique (Doctoral dissertation).
    2. Zeder, M.A., 2008. Domestication and early agriculture in the Mediterranean Basin: Origins, diffusion, and impact. Proceedings of the national Academy of Sciences. 105(33): 11597-11604.
    3. IUCN (International Union for Conservation of Nature). 2018. The IUCN Red List of Threatened Species. Version 2018-2.
    4. Ashrafzadeh, M.R.; Naghipour, A.A.; Haidarian, M. and Mirzaei, R., 2020. Modeling the effects of climate change on the geographic distribution of the wild sheep in Lorestan Province, Iran. Journal of Animal Environmental. 12(3): 59-68. (In Persian)
    5. Karami, M.; Ghadirian, T. and Faizolahi, K., 2016. The atlas of the mammals of Iran. Iran Department of the Environment. Tehran, Iran. (In Persian)
    6. Valentini, A.; Pompanon, F. and Taberlet, P., 2009. DNA barcoding for ecologists. Trends in ecology & evolution. 24(2): 110-117.
    7. Asadi Aghbolaghi, M.; Ahmadzadeh, Kiabi, B. and Keyghobadi, N., 2020. Variability of the Mitochondrial Genome (d-Loop) in Red squirrel, Japanese squirrel and Persian squirrel. Journal of animal Research. 33(1): 43-54. (In Persian)
    8. Avise, J.C., 1995. Mitochondrial DNA polymorphism and a connection between genetics and demography of relevance to conservation. Conservation Biology. 7: 45-67.
    9. Linda, K.P. and Paul, M., 1995. Developments in molecular genetic techniques in fisheries. In: Carvalho, G.R. and Pitcher, T.J., Eds., Molecular Genetics in Fisheries. Chapman and hall, London. 1-28.
    10. Wolf, A.B.; Caselli, R.J.; Reiman, E.M. and Valla, J., 2013. APOE and neuroenergetics: an emerging paradigm in Alzheimer's disease. Neurobiology of aging. 34(4):
      1007-1017.
    11. Nachman, M.W., 2001. Single nucleotide polymorphisms and recombination rate in humans. TRENDS in Genetics. 17(9): 481-485.
    12. Naderi, S.; Rezaei, H.R.; Taberlet, P.; Zundel, S.; Rafat, S.A.; Naghash, H.R.; El-Barody, M.A.; Ertugrul, O.; Pompanon, F. and Econogene Consortium., 2007. Large scale mitochondrial DNA analysis of the domestic goat reveals six haplogroups with high diversity. PLoS One. 2(10): e1012.
    13. Morin, P.A.; Luikart, G. and Wayne, R.K., 2004. SNPs in ecology, evolution and conservation. Trends in ecology & evolution. 19(4): 208-216.
    14. Jehle, R. and Arntzen, J.W., 2002. Microsatellite markers in amphibian conservation genetics. Herpetological journal. 12: 1-9.
    15. Aulchenko, Y.S.; Ripke, S.; Isaacs, A. and Van Duijn, C.M., 2007. GenABEL: An R library for genome-wide association analysis. Bioinformatics. 23(10): 1294-1296.
    16. Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. and Sham, P.C., 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. The American journal of human genetics. 81(3): 559-575.
    17. Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. and McVean, G., 2011. The variant call format and VCFtools. Bioinformatics. 27(15): 2156-2158.
    18. Librado, P.; Gamba, C.; Gaunitz, C.; Der Sarkissian, C.; Pruvost, M.; Albrechtsen, A.; Fages, A.; Khan, N.; Schubert, M.; Jagannathan, V. and Serres-Armero, A., 2017. Ancient genomic changes associated with domestication of the horse. Science. 356(6336): 442-445.
    19. Bertorelle, G.; Bruford, M.W.; Hauffe, H.C.; Rizzoli, A. and Vernesi, C., 2009.Population genetics for animal conservation. Cambridge university press.
    20. Freeland, J.R., 2020. Molecular ecology. John Wiley & Sons.
    21. Pichler, R.; Hussain, T.; Xu, W.; Aftab, A.; Babar, M.E.; Thiruvenkadan, A.K.; Ramasamy, S.; Teneva, A.; Sebastino, K.; Sanou, M. and Traore, A., 2017. Short tandem repeat (STR) based genetic diversity and relationship of domestic sheep breeds with primitive wild Punjab Urial sheep (Ovis vignei punjabiensis). Small ruminant research. 148: 11-21.