تأثیر استفاده از منابع پروتئین‌های گیاهی و جانوری ارزان قیمت به جای پودر ماهی بر شاخص‌های رشد، هماتولوژی و آنزیم‌های کبدی فیل ماهی (Huso huso) پرورشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه تحقیقات بین المللی تاسماهیان دریای خزر، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران

2 گروه شیلات، دانشکده منابع طبیعی، دانشگاه گیلان، صومعه سرا، ایران

10.22034/AEJ.2021.269932.2455

چکیده

به منظور کاهش سهم پودر ماهی در جیره غذایی فیل ماهی، مخلوطی از پروتئین‌های گیاهی و جانوری (گلوتن ذرت: 35 درصد، گلوتن گندم: 19/34 درصد، آرد سویای فرآوری شده: 3 درصد، پودر ضایعات مرغ: 20 درصد، پودر گوشت و استخوان: 8 درصد، پودر خون: 4/3 درصد) از لحاظ ترکیب شیمیایی و پروفایل اسیدآمینه مشابه پودر ماهی بود، در سطوح جایگزینی 20، 40، 60 و 80 درصد جایگزین پودر ماهی شدند و به نام تیمارهای 1 (FM)، 2 (MPP20)، 3 (MPP40)، 4 (MPP60) و 5 (MPP80) نامیده شدند. تمام جیره‌ها دارای سطوح یکسان پروتئین و انرژی (44 درصد و 4365 کیلوکالری/کیلوگرم) بودند. فیل ماهیان با میانگین وزن 6/5 ±167 گرم از جیره ‏های مزبور تا حد سیری تغذیه و شاخص‌های رشد، هماتولوژی و برخی از شاخص‌های ایمنی غیر اختصاصی و آنزیمی آن ها مورد مطالعه قرار گرفت. نتایج نشان داد که شاخص‌های رشد از جیره‌های مختلف غذایی تأثیر نپذیرفت (P>0/05). اختلاف معنی‌داری در تعداد گلبول ­های سفید، قرمز، هموگلوبین، هماتوکریت، غلظت متوسط هموگلوبین (MCHC)، مونوسیت و ائوزینوفیل ماهیان در مقایسه با ماهیان تغذیه‌شده با جیره مبتنی بر پودر ماهی (FM) مشاهده نشد (P>0/05)، اما میزان حجم متوسط گلبول‌های قرمز (MCV) در ماهیان تغذیه‌شده با جیره‌های (MPP20،MPP40 ، MPP60 و MPP80) و وزن متوسط هموگلوبین موجود در یک گلبول قرمز (MCH) ماهیان تیمارهای MPP60 و MPP80 نسبت به ماهیان تیمار (FM) به­ طور معنی‌داری کاهش یافت (P<0/05). میزان لنفوسیت در ماهیان تغذیه­ شده با جیره­ های MPP20، و MPP40  به طور معنی‌داری از ماهیان تغذیه‌شده با جیره FM کم تر بود (P<0/05)، با افزایش مخلوط پروتئین جانوری به جای پودر ماهی فعالیت آنزیم‌های  AST و ALT کبد در مقایسه با ماهیان تغذیه‌شده با جیره مبتنی بر پودر ماهی به طور معنی‌داری افزایش یافت (P<0/05). نتایج این آزمایش نشان داد که امکان جایگزینی 40 درصد از مخلوط پروتئین‌های حیوانی و گیاهی به‌جای پودر ماهی بدون تأثیر منفی بر شاخص‌های رشد، بقاء، شاخص‌های هماتولوژی و برخی از شاخص ­های ایمنی غیر اختصاصی و آنزیمی فیل ماهی در حال رشد وجود دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of replacing fish meal with plant and animal composition on growth indices, hematology and hepatic enzymes of Huso huso

نویسندگان [English]

  • Mir Hamed Sayed Hassani 1
  • Mirmasoud Sajjadi 2
  • Bahram Falahatkar 2
  • Ayoub Yosefi jourdehi 1
  • Maryam Monsef Shokri 1
  • Alireza AlipourJour Shari 1
  • Hooshang Yeganeh 1
1 International Sturgeon Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran
2 Department of Fisheries, Faculty of Natural Resources, University Guilan, Sowmeh Sara, Iran
چکیده [English]

To purpose fish meal reduaction in Huso huso diet, a combinaton of plant and animal proteins (corn gluten: 35%, wheat gluten: 19.34%, processed soy meal: 3%, poultry by product: 20%, meat and bone meal: 8%, blood meal: 4.3%) similar in chemical composition and amino acid profile was subsutsted Anchovy fish meal at 0, 20, 40, 60 and 80% and named of treatment 1 (FM), treatment 2 (MPP20), treatment 3 (MPP40), Treatment 4 (MPP60) and treatment 5 (MPP80). All diets had the same protein and energy levels (44% and 4365 kcal / kg). Huso huso (average weight, 167 ± 6.5 gr) were fed saturarated and growth indices, hematology and enzyme liver were studied. The results showed that growth indices were not affected by different diets (P> 0.05). There was no significant difference in white blood cell count, red blood cell, hemoglobin, hematocrit, mean hemoglobin concentration (MCHC), monocyte and eosinophil in fish compared to fish fed on fish meal (FM) diet (P>0.05), but mean erythrocyte volume (MCV) in diets fed with diets (MPP20, MPP40, MPP60 and MPP80) and mean hemoglobin weight in one erythrocyte (MCH) of MPP60 and MPP80 compared to (FM) were significantly Decreased (P<0.05). Increasing mixture of animal protein instead of fish meal significantly increased the activity of liver AST and ALT enzymes compared to fish fed a diet based on fish meal (P<0.05). The results of this experiment showed that there was possibility of replace 40% fish meal by mixture of animal and plant proteins without adversely affect on hematological parameters and and liver enzym in growing Huso huso.

کلیدواژه‌ها [English]

  • Huso huso
  • Animal and plant protein mix
  • Growth
  • Hematology
  • Liver enzyme
  1. De Silva, S., 2016. Aquaculture- a newly emergent food production sector- and perspectives of its impacts on biodiversity and conservation. Biodiversity and Conservation. 21(12): 3187-3220. DOI 10.1007/s 10531-012-0360-09.
  2. Tacon, G.J. and Metian, M., 2008. Global overview on the use of fish meal and fish oil industrially compounded aqua feeds: Trends and future prospects. Aquaculture. 285: 146-158.
  3. Jackson, A.J., 2007. Challenges and opportunities for the fishmeal and fish oil industry. Feed Tech Update. 2: 9.
  4. Hung, S.S.O., 2017. Recent advances in sturgeon nutrition. Anim Nutr. 3: 191-204.
  5. Mohseni, M., Pourkazemi, M., Hosseni, M.R., Hassani, M.H.S. and Bai, S.C., 2013. Effects of the dietary protein levels and the protein to energy ratio in sub-yearling Persian sturgeon (Acipenser persicus). Aquacult Rese. 44: 378- 387.
  6. Abdolhay, H. and Karami Rad, N., 2017. Sturgeon Farming Development in Iran. Advanced Aquaculture Sciences Journal. 1(2): 32-44. (In Persian)
  7. Billard, R. and Lecointre G., 2001. Biology and conservation of sturgeon and paddlefish. Rev Fish Biol Fisher. 10: 355-392.
  8. Yazdani Sadati, M.A., Bahmani, M., Mohseni, M., Kazemi, R., Shakurian, M., Pourali, H.M., Peykaran Mana, N., Pourdehghani, M., Seyed Hasani, M.H., Pourgholam, M.A., Nezami, A. and Yeganeh, H., 2014. Final report of the project A pre-production research of Huso huso material Breeding up to 16 kg. Iranian Fisheries Science Research Institute. International Sturgeon Research Institute. 54 p. (In Persian)
  9. Yousefi Jourdehi, A., Sudagar, M., Bahmani, M., Hosseini, S.A., Dehghani, A.A. and Yazdani, M.A., 2013. Comparison of the effects of phytoestrogens genistein and Equol levels of sex steroid hormones in farmed female beluga (Huso huso). Journal of Animal Environment. 5(2): 51-75. (In Persian)
  10. Mohseni, M., Porkazemi, M., Bahmani, M., Salehpor, M., Porali, H. and Hadadi moghadam, K., 2017. Rearing Huso huso in earthen ponds and fiberglass tanks. Iranian Scientific Fisheries Journal. 14(1): 119-132. (In Persian)
  11. Yun, B., Xue, M., Wang, J., Sheng, H., Zheng, Y. and Wu, X., 2014. Fishmeal can be totally replaced by plant protein blend at two protein levels in diets of juvenile Siberian sturgeon (Acipenser baerii Brandt). Aquacult Nutr. 20: 69-78.
  12. Glencross, B.D., Booth, M. and Allan, G.L., 2007. A feed is only as good as its ingredients - a review of ingredient evaluation strategies for aquaculture feeds. Aquacut Nut. 13: 17-34.
  13. Raskovic, C.B., Stonkovic, B., Markovic, Z.Z. and Poleksic, V.D., 2011. Histological methods in the assessment of different feed effects on liver and intestine of fish, J Agri Sci. 56: 87-100.
  14. Datta, S.N., Singh, A., Mandal, A. and Jassal, G., 2018. Effect of different dietary protein sources on hematological parameters of striped catfish (Pangasianodon hypophthalmus). J Entom Zool Stu. 6: 3198-3202.
  15. Brandson, M.P., Carter, C.G. and Nowak, B.F., 2001. Effects of dietary protein source on growth, immune function, blood chemistry and disease resistance of Atlantic salmon (Salmo salar) parr. Anim Sci. 73: 105-113.
  16. Rumsey, G., Endres, J.G., Bowser, P.R., Earnest-Koons, K.A., Anderson, D.P. and Siwicki, A.K., 1994. Soy protein in diets for rainbow trout: Effects on growth, protein absorption, gastrointestinal histology, and nonspecific serological and immune response. In: C. Lim and D.J. Sessa (Editors), Nutrition and Utilization Technology in Aquaculture. AOAC Press, Champaign, IL. 166-188.
  17. Krogdahl, A., Bakke-Mckellep, A.M., Roed, K.H. and Baeverfjord, G., 2000. Feeding Atlantic salmon (Salmo salar), soybean products: Effects on disease resistance furunculosis, and lysozyme and IgM levels in the intestinal mucosa, Aquacult Nutr. 6: 77-84.
  18. Neji, H., Naimi, N., Lallier, R. and De-la-Noue, J., 1993. Relationships between feeding, hypoxia, digestibility and experimentally induced furunculosis in rainbow trout. In: Kaushik, S.J. and Luquet, P., (Eds). Fish nutrition in practice. Institut National de la Recherche Agronomique, Paris. 321 p.
  19. Ostaszewska, T., Dabrowski, K., Czuminska, K., Olech, W. and Olejniczak, M., 2005. Rearing of pike perch larvae using formulated diets-first success with starter feeds. Aquacult Res. 36: 1167-1176.
  20. Tacon, A.G.J., 1992. Nutritional Fish Pathology: Morphological Signs of Nutrient Deficiency and Toxicity in Farmed Fish. FAO Fish Technical Paper. No: 330. Rome, FAO. 75 p.
  21. Soltan, M.A., Hanafy, M.A. and Wafa, M.I.A., 2008. Effect of replacing fish meal by a mixture of different plant protein sources in Nile tilapia (Oreochromis niloticus) diets. GlobVet. 9: 157-164.
  22. NRC. 2011. Nutrient Requirements of Fish and Shrimp. The National Academy Press, Washington, DC. 329 p.
  23. Kryuchkov, V.I. and Obukhov, D.K., 2006. Development of Juvenile Sterlet (Acipenser ruthenus) reared under different light conditions, in akvakul’tura osetrovykh ryb: dostizheniya i perspektivy razvitiya (Sturgeon Pisciculture: Advancements and Outlooks), Moscow: VNIRO. 27-29. (In Russian).
  24. Falahatkar, B., Efatpanah, I. and Meknatkhah, B., 2018. A comparative study of feeding methods: Effect on the growth, behavior and biochemical performance of juvenile Beluga sturgeon (Huso huso). J Appl Ichthyolo. 35: 283-288.
  25. M., Zhou, Z., Wu, X.F., Yu, Y. and Ren, Z.L., 2003. Partial or total replacement of fish meal by meat and bone meal in practical diets for Nile tilapia, (Oreochromis niloticus), Chin of Anim Nutr. 15: 106-112.
  26. Hung, S.S.O., 1989. Choline requirement of hatchery-produced juvenile white sturgeon. Aquacult. 78: 183-192.
  27. Kazemi, R., Pourdehghani, M., Yousefi, A., Yarmohammadi, M. and Nasri Tajen, M., 2009. Physiology of the circulatory system of aquatic animals and applied techniques of fish hematology. Bazargan Publications. 194 p. (In Persian)
  28. Barcellos, L.J., Kreutz, L.C., Rodrigues, L.B., Fioreze, I., Quevedo, R.M., Cericato, L., Soso, A. B., Fagundes, M., Lacerda, L. and Terra, S., 2004. Hematological and biochemical characteristics of male jundia´ (Rhamdia quelen Quoy & Gaimard Pimelodidae): changes after acute stress. Aquacult Res. 34: 1456-1469.
  29. Lewis, S.M., 1984. Practical hematology. 265 p.
  30. Potki, N., Falahatkar, B. and Alizadeh, A., 2018. Growth, hematological and biochemical indices of common carp Cyprinus carpio fed diets containing corn gluten meal. Aquacult Inter. 26: 1573-1586.
  31. Refstie, S., Korsøen, Ø.J., Storebakken, T., Baeverfjord, G., Lein, I. and Roem, A.J., 2000. Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar), Aquacult. 190: 49-63.
  32. Chou, R.L., Her, B.Y., Su, M.S., Hwang, G., Wu, Y.H. and Chen, H.Y., 2004. Substituting fish meal with soybean meal in diets of juvenile cobia (Rachycentron canadum). Aquacult. 229: 325-333.
  33. Thomas, A., De La Gandara, F., Garcia-Gomez, A., Perez, L. and Jover, M., 2005. Utilisation of soybean meal as an alternative protein source in the Mediterranean yellowtail, (Seriola dumerili), Aquacult Nutr. 11: 333-340.
  34. Wang, Y., Kong, L.J., Li, C. and Bureau, D.P., 2006. Effect of replacing fish meal with soybean meal on growth, feed utilization and carcass composition of cuneate drum (Nibea miichthioides), Aquacult. 261: 1307-1313.
  35. Hernandez, M.D., Martiniz, F.J., Jover, M. and Garcia Garcia, B., 2007. Effects of partial replacement of fish meal by soybean meal in Sharpsnout seabream (Diplodus puntazzo), Aquacult. 63: 159-167.
  36. Yun, B., Ai, Q., Mai, K., Xu, W., Qi, G. and Luo, Y., 2010. Synergistic effects of dietary cholesterol and taurine on growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus) fed high plant protein diets, Aquacult. 324: 85-91.
  37. Francis, G., Makkar, H.P.S. and Becker, K., 2001. Anti nutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquacul. 199: 197-227.
  38. Opstvedt, J., Aksnes, A., Hope, B. and Pike, I.H., 2003. Efficiency of feed utilization in Atlantic salmon (Salmo salar) fed diets with increasing substitution of fish meal with vegetable proteins. Aquacult. 221: 365-379.
  39. Fowler, G., 1991. Poultry by-product meal as a dietary protein source in fall Chinook salmon diets. Aquacult. 99: 309-321.
  40. Bureau, D.P., Harris, A.M. and Cho, C.Y., 2000. Feather meals and bone meals from different origins as protein sources in rainbow trout (Oncorhynchus mykiss). Aquacult. 181: 281-291.
  41. Kureshy, N., Allen Davis, D. and Arnold, C.R., 2000. Partial Replacement of Fish Meal with Meat-and-Bone Meal, Flash-Dried Poultry By-Product Meal, and Enzyme-Digested Poultry By-Product Meal in Practical Diets for Juvenile Red Drum. North Amer J Aquacult. 9: 266-272.
  42. Allan, G.L., Parkinson, S., Booth, M.A., Stone, D.A.J., Rowland, S.J., Frances, J. and Warner-Smith, R., 2000. Replacement of fish meal in diets for Australian silver perch, (Bidyanus bidyanus): I. Digestibility of alternative ingredients. Aquac, 186: 293-310.
  43. Zhu, H., Gong, G., Wang, J., Wu, X., Xue, M. and Niu, C., 2011. Replacement of fish meal with blend of rendered animal protein in diets for Siberian sturgeon (Acipenser baerii Brandt), results in performance equal to fish meal fed fish. Aquacult Nutr. 17: 389-395.
  44. Tacon, A.G.J., 1997. Fishmeal replacers: review of antinutrients within oilseeds and pulses. In: Tacon, A.G. and Basurco, B., (Eds). A limiting factor for the aquafeed green revolution Feeding Tomorrows Fish. Cahiers Options Mediterraneas Zaragoza, Spain. 153-182.
  45. Kaushik, S.J. and Hemre, G.I., 2008. Plant proteins as alternative sources for fish feed and farmed fish quality. In: Lie, O., (Eds). Improving Farmed Fish Quality and Safety. Woodhead Publishing Limited, Cambridge, UK. 300-327.
  46. Naji, M., Abdali, S., Yazdani, M.A. and Yousefi Jourdehi, A., 2013. Impacts of Atrazine on some blood and biochemical indices in farmed Acipenser nudiventris. Journal of Animal Environment. 5(2): 59-69. (In Persian)
  47. Nasri Tajan, M., Bagherzadeh Lakani, F. and Taklu, M., 2016. Determination of some hematological and biochemical parameters at different ages of reared Persian sturgeon (Acipenser persicus). Aquatic Animals Nutrition. 2(1): 37-47. (In Persian)
  48. Jahanbakhshi, A., Imanpoor, M., AghAzadeh, V. and Shabani, A., 2012. Hematological and serum biochemical indices changes induced by replacing fish meal with plant protein (sesame oil cake and corn gluten) in the great sturgeon (Huso huso). Comp Clin Patho. 22: 1087-1092.
  49. Hosseini, S.A. and Khajepour, F., 2015. Effect of partial replacement of dietary fish meal with soybean meal on some hematological and serum biochemical parameters of juvenile Beluga, (Huso huso). Irani J Fisher Sci. 12: 348-356.
  50. Jalili, R., Tukmechi, A., Agh, N. and Ghasemi, A., 2013. Replacement of dietary fish meal with plant sources in rainbow trout (Oncorhynchus mykiss): Effect on growth performance, immune responses, blood indices and disease resistance. Irani J Fisher Sci. 12: 577-591.
  51. Zheng, Q., Wen, X., Han, C., Li, H. and Xie, X., 2012. Effect of replacing soybean meal with cottonseed meal on growth, hematology, antioxidant enzymes activity and expression for juvenile grass carp, (Ctenopharyngodon idellus). Fish Physiol Biochem. 38: 1059-1069.
  52. Falahatkar, B.; 2012. The metabolic effects of feeding and fasting in beluga (Huso huso). Mar. Enviro. Res. 82: 69-75.
  53. Grant, K.R., 2015. Fish hematology and associated disorders, Clinic North Americ Exo Anim Pract. 18: 83-103.
  54. Bani, A., Tabarsa, M. and Falahatkar, B., 2009. Effects of different photoperiods on growth, stress and haematological parameters in juvenile great sturgeon (Huso huso). Aquacult Res. 40: 1899-1907.
  55. Emre, N., Güroy, D., Yahm, F., Emre, Y., Guroy, B., Montaglu, S. and KaradalQ., 2008. Growth performance, body composition, hematological and serum parameters to fish meal replacement by soybean meal and cottonseed meal in Russian sturgeon (Acipenser gueldenstaedtii). J. Limno Fresh Fisher Res. 4: 169-176.
  56. Fagbenro, O.A., Adeparusi, E.O. and Jimoh, W.A., 2010. Nutritional evaluation of raw sunflower and sesame seed meal in Clarias gariepinus: an assessment by growth performance and nutrient utilization. Afric J Agri Res. 5: 3096- 3101.
  57. Owen, O.J. and Amakiri, A.O., 2011. Serological and hematological profile of broiler finishers fed graded levels of Bitter leaf (Vernonia amygdalina) meal. Advanc Agri Bio. 9: 77-81.
  58. Udoh, J., Emah, A.U., George, I.E. and Philip, A.E., 2017. Growth performance and haematological response of Clarias gariepinus broodstock fed diets enriched with bitter leaf meal. AACL Bioflux. 10: 1281-1296.
  59. Lin, S. and Luo, L., 2011. Effects of different levels of soybean meal inclusion in replacement for fish meal on growth, digestive enzymes and transaminase activities in practical diets for juvenile tilapia (Oreochromis niloticus × O. aureus). Anim Feed Sci Techn. 168: 80-87.
  60. Abou El-Naga, E.H., El-Moselhy, K.H.M. and Hamed, M.A., 2005. Toxicity of Cadmium and Copper and Their Effect on Some Biochemical Parameters of Marine Fish Mugil Seheli. Egyptian Journal of Aquatic Research. 31: 60-71.
  61. Lynch, M.J., Raphael, S.S., Mellor, L.D., Spare, P.D. and Inwood, M.J.H., 1969. Medical Laboratory Technology and Clinical Pathology, 2nd edn. W. B. Saunders Company, London. 123 p.
  62. Drotman, R. and Lawhan, G., 1978. Serum enzymes are indications of chemical induced liver damage. Dru Chem Toxiol. 1: 163-171.
  63. Mahmoud, M.M.A., Kilany, O.E. and DessoukI A.A., 2014. Effects of fish meal replacement with Soybean meal and use of exogenous enzymes in diets of Nile Tilapia. Life Sci J. 11: 6-18.