بررسی تجمع غلظت جیوه کل در بافت خوراکی ماهیان پر مصرف تالاب انزلی و ارزیابی ریسک ناشی از آن برای خانواده های شیلاتی و غیرشیلاتی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دریایی، دانشکده منابع طبیعی و محیط زیست، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران.

2 گروه محیط زیست، دانشکده منابع طبیعی، دانشگاه تربیت مدرس، نور، ایران

3 گروه محیط زیست، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

10.22034/AEJ.2021.313208.2680

چکیده

فلز سمی جیوه به یکی از مهم ترین آلاینده های فلزی تالاب انزلی تبدیل شده است به نحوی که سلامت و کیفیت ماهیان خوراکی این اکوسیستم را برای مصرف کنندگان به شکل جدی به خطر انداخته است. تعداد 10 عدد از چهار گونه ماهی شامل سوف معمولی (Sander lucioperca)، اردک ماهی (Esox luscious)، کپور معمولی (Cyprinus carpio) و کاراس (Carassius aurata) صید شدند. از روش جذب اتمی برای سنجش جیوه استفاده شد. فاکتورهای ضریب خطر غیر سرطان زایی (HQ)، جذب روزانه جیوه (DI)، مقدار مجاز مصرف روزانه ماهی (CRlim) و مقدار مجاز مصرف ماهیانه (CRmm) برای کودکان، زنان و بزرگسالان برای خانوارهای شیلاتی و غیر شیلاتی ارزیابی گردید. میانگین غلظت جیوه کل در بافت خوراکی ماهیان سوف معمولی، اردک ماهی، کپور معمولی و کاراس به ترتیب در محدوده 8/46±149/93، 4/37±165/17، 8/83±78/92 و 5/51±60/7 نانو گرم بر گرم وزن تر قرار داشت. گونه اردک ماهی بیش ترین جیوه را در بافت خوراکی با کم ترین میزان مجاز غذا در ماه 6/6، 5/1 و 5/6 برای کودکان، زنان و بزرگسالان به ترتیب در خانواده های شیلاتی نشان داد. ارزیابی ریسک سلامت خطر غیر سرطان زایی را برای جیوه در اردک ماهی و ماهی سوف برای بزرگسالان و زنان نشان داد (HQ>1). بنابراین تالاب انزلی به شدت با فلز جیوه آلوده شده است و تجمع این فلز در بافت خوراکی ماهیان پر مصرف این زیستگاه می تواند سلامت افراد خانوارهای شیلاتی را بیش از سایر افراد تهدید نماید.  

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation of total mercury concentration in the edible tissue of highly-consumed fish and health risk assessments for fishermen and non-fishermen families in the Anzali wetland

نویسندگان [English]

  • Hedieh Parang 1
  • Abbas Esmaili Sari 2
  • Mojgan Zaeimdar 3
1 Department of Environment Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Environment Science, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran
3 Department of Environment Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

In recent years, the toxic metal mercury has become one of the most important metal pollutants in Anzali wetland, so that the health and quality of edible fish in this ecosystem is seriously endangered for consumers. 10 species of four fish including common perch, duck, common carp and carp were caught. Atomic absorption method was used to measure mercury. Non-carcinogenic risk factors (HQ), daily mercury uptake (DI), allowable daily intake of fish (CRlim) and allowable monthly intake (CRmm) for children, women and adults in both fishery and non-fishery families were assessed. The mean concentrations of total mercury in the oral tissues of common perch, duck, common carp and carp were in the range of 8.46±149.93, 4.37±165.17, 8.83±78.92 and 60.7. 5.51 ng/g fresh weight, respectively. Duck species showed the highest mercury in the edible tissue with the lowest allowable amounts of food per month at 6.6, 5.1 and 5.6 for children, women and adults in fishery families, respectively. Health risk assessment showed a non-carcinogenic risk for mercury in duck and perch for adults and women (HQ>1). Therefore, Anzali wetland is heavily contaminated with mercury metal and the accumulation of this metal in the edible tissue of fish consuming this habitat can threaten the health of fishery households more than other people.

کلیدواژه‌ها [English]

  • Carnivorous fish
  • Omnivorous fish
  • Mercury accumulation
  • Edible tissue
  • Non-carcinogenic risk
  • Permissible intake
  1. Drăgoi, M.C., 2018. Health Determinants. In Food Science and Nutrition. https://doi.org/10.4018/978-1-5225-5207-9.ch001.
  2. Abbasi, K., Moradi, M., Mirzajani, A., Nikpour, M., Zahmatkesh, Y., Abdoli, A. and Mousavi-Sabet, H., 2019. Ichthyodiversity in the Anzali Wetland and its related rivers in the southern Caspian Sea basin, Iran. Journal of Animal Diversity. 1(2): 0-0. https://doi.org/10.29252/jad.2019.1.2.6.
  3. Yan, X., Liu, M., Zhong, J., Guo, J. and Wu, W., 2018. How human activities affect heavy metal contamination of soil and sediment in a long-term reclaimed area of the Liaohe River Delta, North China. Sustainability (Switzerland). 10(2): 1-19. https://doi.org/10.3390/su10020338.
  4. Oken, E., Radesky, J.S., Wright, R.O., Bellinger, D.C., Amarasiriwardena, C.J., Kleinman, K.P., Hu, H. and Gillman, M.W., 2008. Maternal fish intake during pregnancy, blood mercury levels, and child cognition at age 3 years in a US cohort. American Journal of Epidemiology. 167(10): 1171-1181. https://doi.org/10.1093/aje/kwn034.
  5. Olsson, P.E., Kling, P. and Hogstrand, C., 1998. Mechanisms of heavy metal accumulation and toxicity in fish. Metal Metabolism in Aquatic Environments. 321-350. https://doi.org/10.1007/978-1-4757-2761-6-10.
  6. Tabatabaie, T., Ghomi, M.R., Amiri, F. and Zamani-Ahmadmahmoodi, R., 2011. Comparative study of mercury accumulation in two fish species, (Cyprinus carpio and Sander lucioperca) from Anzali and Gomishan wetlands in the southern coast of the Caspian Sea. Bulletin of Environmental Contamination and Toxicology. 87(6): 674-677. https://doi.org/10.1007/s00128-011-0413-x.
  7. Bradney, L., Wijesekara, H., Palansooriya, K.N., Obadamudalige, N., Bolan, N. S., Ok, Y.S., Rinklebe, J., Kim, K.H. and Kirkham, M.B., 2019. Particulate plastics as a vector for toxic trace-element uptake by aquatic and terrestrial organisms and human health risk. Environment International. 131: https://doi.org/10.1016/j.envint. 2019.104937.
  8. Jahan, S. and Strezov, V., 2019. Assessment of trace elements pollution in the sea ports of New South Wales (NSW), Australia using oysters as bioindicators. Scientific Reports. 9(1): 1-10. https://doi.org/10.1038/s41598-018-38196-w.
  9. Tchounwou, P.B., Yedjou, C.G., Patlolla, A.K. and Sutton, D.J., 2012. Molecular, clinical and environmental toxicicology Volume 3: Environmental Toxicology. Molecular, Clinical and Environmental Toxicology. 101: 133-164. https://doi.org/10.1007/978-3-7643-8340-4.
  10. Briffa, J., Sinagra, E. and Blundell, R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. 6(9): e04691. https://doi.org/10.1016/j.heliyon.2020.e04691.
  11. Huang, L., Rad, S., Xu, L., Gui, L., Song, X., Li, Y., Wu, Z. and Chen, Z., 2020. Risk Assessment in Huixian Wetland ,South China. Water. 12(431): 1-14.
  12. Hsu-Kim, H., Eckley, C.S., Achá, D., Feng, X., Gilmour, C.C., Jonsson, S. and Mitchell, C.P.J., 2018. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. 47(2): 141-169. https://doi.org/ 10.1007/s13280-017-1006-7.
  13. Guzzi, G., Ronchi, A. and Pigatto, P., 2021. Toxic effects of mercury in humans and mammals. 263: 127990. https://doi.org/10.1016/j.chemosphere.2020.127990.
  14. Wang, F. and Zhang, J.Z., 2013. Mercury contamination in aquatic ecosystems under a changing environment: Implications for the Three Gorges Reservoir. Chinese Science Bulletin. 58(2): 141-149. https://doi.org/10.1007/s 11434-012-5490-7.
  15. Figueiredo, N., Serralheiro, M.L., Canário, J., Duarte, A., Hintelmann, H. and Carvalho, C., 2018. Evidence of mercury methylation and demethylation by the estuarine microbial communities obtained in stable Hg isotope studies. International Journal of Environmental Research and Public Health. 15(10). https://doi.org/10.3390/ijerph 15102141.
  16. Ullrich, S.M., Tanton, T.W. and Abdrashitova, S.A., 2001. Mercury in the aquatic environment: A review of factors affecting methylation. Critical Reviews in Environmental Science and Technology. 31(3): 241-293. https://doi.org/10. 1080/20016491089226.
  17. Kehrig, H.A., Costa, M., Moreira, I. and Malm, O., 2006. Total and methyl mercury in different species of molluscs from two estuaries in Rio de Janeiro State. Journal of the Brazilian Chemical Society. 17(7): 1409-1418. https://doi.org/10.1590/S0103-50532006000700031.
  18. Ruelas-inzunza, J.R., Escobar-sánchez, O. and Páez-osuna, F., 2014. Impact. August. https://doi.org/10.1007/ 978-94-017-8917-2
  19. Omar, W.A., Zaghloul, K.H., Abdel-Khalek, A.A. and Abo-Hegab, S., 2013. Risk assessment and toxic effects of metal pollution in two cultured and wild fish species from highly degraded aquatic habitats. Archives of Environmental Contamination and Toxicology. 65(4): 753-764. https://doi.org/10.1007/s00244-013-9935-z.
  20. Mahboob, S., Kausar, S., Jabeen, F., Sultana, S., Sultana, T., Al-Ghanim, K. A., Hussain, B., Al-Misned, F. and Ahmed, Z., 2016. Effect of Heavy Metals on Liver, Kidney, Gills and Muscles of Cyprinus carpio and Wallago attu inhabited in the Indus. Brazilian Archives of Biology and Technology. 59(0): 1-10. https://doi.org/10.1590/1678-4324-2016150275.
  21. Kacholi, D.S. and Sahu, M., 2018. Levels and Health Risk Assessment of Heavy Metals in Soil, Water, and Vegetables of Dar es Salaam, Tanzania. Journal of Chemistry. https://doi.org/10.1155/2018/1402674.
  22. Kinuthia, G.K., Ngure, V., Beti, D., Lugalia, R., Wangila, A. and Kamau, L., 2020. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Scientific Reports. 10(1): 1-13. https://doi.org/10.1038/s41598-020-65359-5.
  23. Kortei, N.K., Heymann, M.E., Essuman, E.K., Kpodo, F.M., Akonor, P.T., Lokpo, S.Y., Boadi, N.O., Ayim-Akonor, M. and Tettey, C., 2020. Health risk assessment and levels of toxic metals in fishes (Oreochromis noliticus and Clarias anguillaris) from Ankobrah and Pra basins: Impact of illegal mining activities on food safety. Toxicology Reports. 360-369. https://doi.org/10.1016/j.toxrep.2020.02.011.
  24. Wimalawansa, S.J., 2016. The role of ions, heavy metals, fluoride, and agrochemicals: critical evaluation of potential aetiological factors of chronic kidney disease of multifactorial origin (CKDmfo/CKDu) and recommendations for its eradication. Environmental Geochemistry and Health. 38(3): 639-678. https://doi.org/ 10.1007/s10653-015-9768-y.
  25. Mahdiabkenar, , Yahyavi, M., Bahri, A. and  Bivareh, M., 2020. Heavy metal concentration of lead, copper, cadmium and mercury in edible tissues of Spiny Oyster (Saccostrea cucullata) and Indian white prawn (Penaeus indicus) from northern coasts of the Oman Sea. Journal of Animal Environmental. 11(4): 321-330. (In Persian)
  26. Modaberi, H. and Shokoohi, A.R., 2019. Using Eco-Hydrologic Methods in Determining Anzali Wetland Environmental Water Requirement. Iran-Water Resources Research. 15: 91-104.
  27. Moghaddas, S.D., Abdoli, A., Kiabi, B.H., Rahmani, H., Vilizzi, L. and Copp, G.H., 2021. Identifying invasive fish species threats to RAMSAR wetland sites in the Caspian Sea region A case study of the Anzali Wetland Complex (Iran). Fisheries Management and Ecology. 28(1): 28-39. https://doi.org/10.1111/fme.12453.
  28. Astani, E., Vahedpour, M., Babaei, H. and Karimipour, M., 2016. Determination of the total mercury concentration in the Anzali international Wetland , Iran and effect of environmental parameters on its concentration.
  29. Molazadeh, N. and Nozari, M., 2014. Study of mercury bioaccumulation in some organs of Anzali wetland pike (Esox lucius) and mercury concentration relation with total body length and sex. Journal of Wetland Ecobiology. 6(3): 49-58.
  30. Ebrahimpour, M., Pourkhabbaz, A., Baramaki, R., Babaei, H. and Rezaei, M., 2011. Bioaccumulation of heavy metals in freshwater fish species, Anzali, Iran. Bulletin of Environmental Contamination and Toxicology. 87(4): 386-392. https://doi.org/10.1007/s00128-011-0376-y.
  31. Sinkakarimi, M.H., Gorjian Arabi, M.H., Ahmadpour, and Hassanpour, M., 2020. A survey of cadmium and zinc in Sand smelt (Atherina boyeri caspia) from Anzali International Wetland. Journal of Animal Environmental. 12(3): 167-174. doI: 10.22034/aej.2020.113903. (In Persian)
  32. Malvandi, H., Ghasempouri, S.M., Esmaili-Sari, A. and Bahramifar, N., 2010. Evaluation of the suitability of application of golden jackal (Canis aureus) hair as a noninvasive technique for determination of body burden mercury. Ecotoxicology. 19(6): 997-1002. https://doi.org/10. 1007/s10646-010-0504-1.
  33. da Silva, G.S., Neto, F.F., Silva de Assis, A.C., Bastos, W.R. and de Oliviera Ribeiro, C.A., 2012. Potential risks of natural mercury levels to wild predatorfish in anAmazon reservoir.Environ Monit Assess. 184: 4815-4827.
  34. Movafagh Behnam, M., Esmaili Sari, A. and Majedi, S.M., 2020. Accumulation of mercury and zinc in muscle tissue of four species of fishes in Caspian Sea (Case study: coastal of Mahmoud Abad-Noshahr). Journal of Animal Environment. 12(3): 183-188. (In Persian)
  35. Okati, N. and Esmaili-sari, A., 2018. Hair mercury and risk assessment for consumption of contaminated seafood in residents from the coast of the Persian Gulf, Iran. Environmental Science and Pollution Research. 25(1): 639-657.
  36.  USEPA. 2005. (U.S. Environmental Protection Agency, Office of Science and Technology, Office of Water) Water Quality Criterion for the Protection of Human Health: Methylmercury. http://www. epa.gov/waterscience /criteria/ methylmercury/document.html.
  37. Koshafar, , Savari, A., Sakhaei, N., Archangi, B. and Karimi Organi, F., 2020. Evaluation of carcinogenicity and non-carcinogenicity of heavy metals in the dominant muscle of Bahmanshir River. Journal of Animal Environment. 11(4): 155-162. (In Persian)
  38. Nejatkhah Manavi, and Mazumder, A., 2018. Potential risk of mercury to human health in three species of fish from the southern Caspian Sea. Marine Pollution Bulletin. 130(6):1-5. DOI: 10.1016/j.marpolbul.2018.03.004.
  39. Zamani Ahmad Mahmoudi, M., Nassiri, S.M., Solati, A. and Khaksar, E., 2014. A rare case of cutaneous leiomyosarcoma in budgerigar (Melopsittacus undulatus), Archives of Razi Institute. 1: 57-60.
  40. Solgi, and Khatoni, S. 2015. Evaluation of some heavy metal levels in Zarivar international wetland by monitoring of Cyprinus carpio. Journal of Animal Environment. 7(3): 109-118. (In Persian)
  41. Sadeghi, M., Ghasempouri, S.M. and Bahramifar, , 2016. Biomonitoring of mercury concentration in 16 feather growth locations of wild waterfowls and their healthy food investigation by tropic level and strategy. Journal of Animal Environment. 8(2): 65-72. (In Persian)
  42. Arisekar, U., Shakila, R. J., Shalini, R. and Jeyasekaran, G., 2020. Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from Thamirabarani River, the Western Ghats of South Tamil Nadu. Marine Pollution Bulletin. 159: https://doi.org/10.1016/j.marpolbul.2020.111496.
  43. Hinojosa-Garro, D., Osten, J.R.V. and Dzul-Caamal, R., 2020. Banded tetra (Astyanax aeneus) as bioindicator of trace metals in aquatic ecosystems of the Yucatan Peninsula, Mexico: Experimental biomarkers validation and wild populations biomonitoring. Ecotoxicology and Environmental Safety. 195: https://doi.org/10.1016/j. ecoenv.2020.110477.
  44. Pandiyan, J., Mahboob, S., Govindarajan, M., Al-Ghanim, K. A., Ahmed, Z., Al-Mulhm, N., Jagadheesan, R. and Krishnappa, K., 2021. An assessment of level of heavy metals pollution in the water, sediment and aquatic organisms: A perspective of tackling environmental threats for food security. Saudi Journal of Biological Sciences. 28(2): 1218-1225. https://doi.org/10.1016/j.sjbs.2020.11.072.
  45. Ravanbakhsh, M., Zare Javid, A., Hadi, M. and Jaafarzadeh Haghighi Fard, N., 2020. Heavy metals risk assessment in fish species (Johnius Belangerii (C) and Cynoglossus Arel) in Musa Estuary, Persian Gulf. Environmental Research. 188. https://doi.org/10.1016/j.envres.2020.109560.
  46. Paranjape, A.R. and Hall, B.D., 2017. Recent advances in the study of mercury methylation in aquatic systems. Facets. 2(1): 85-119. https://doi.org/10.1139/facets-2016-0027.
  47. Fu, Z. and Xi, S., 2020. The effects of heavy metals on human metabolism. Toxicology Mechanisms and Methods. 30(3): 167-176. https://doi.org/10.1080/15376516.2019.1701594.
  48. Yuan, Y., Sun, T., Wang, H., Liu, Y., Pan, Y., Xie, Y., Huang, H. Fan, Z., 2020. Bioaccumulation and health risk assessment of heavy metals to bivalve species in Daya Bay (South China Sea): Consumption advisory. Marine Pollution Bulletin. 150: https://doi.org/10.1016/j.marpolbul.2019.110717.
  49. Custódio, F.B., Andrade, A.M.G.F., Guidi, L.R., Leal, C.A.G. and Gloria, M.B.A., 2020. Total mercury in commercial fishes and estimation of Brazilian dietary exposure to methylmercury. Journal of Trace Elements in Medicine and Biology. 62. https://doi.org/10.1016/j.jtemb.2020.126641
  50. Kim, H., Lee, J., Woo, H.D., Kim, D.W., Oh, J.H., Chang, H.J., Sohn, D.K., Shin, A. and Kim, J., 2020. Dietary mercury intake and colorectal cancer risk: A case-control study. Clinical Nutrition. 39(7): 2106-2113. https://doi.org/ 10.1016/j.clnu.2019.08.025.
  51. Esmaeilzadeh, M., Karbassi, A. and Moattar, F., 2016. Assessment of metal pollution in the Anzali Wetland sediments using chemical partitioning method and pollution indices. Acta Oceanologica Sinica. 35(10): 28-36. https://doi.org/10.1007/s13131-016-0920-z.
  52. Vesali Naseh, M.R., Karbassi, A., Ghazaban, F. and Baghvand, A., 2012. Evaluation of heavy metal pollution in Anzali Wetland, Guilan, Iran. Iranian Journal of Toxicology. 5(15): 565-576.
  53. Khanipour, A.A., Ahmadi, M. and Seifzadeh, M., 2018. Study on bioaccumulation of heavy metals (cadmium, nickel, zinc and lead) in the muscle of wels catfish (Silurus glanis) in the Anzali Wetland. Iranian Journal of Fisheries Sciences. 17(1): 244-250. https://doi.org/10.22092/ijfs.2018.118782.
  54. Zolfaghari, G., 2018. Risk assessment of mercury and lead in fish species from Iranian international wetlands. 5: 438-447. https://doi.org/10.1016/j.mex.2018.05.002.
  55. Mathers, R.A. and Johansen, P.H., 1985. The effects of feeding ecology on mercury accumulation in walleye ( Stizostedion vitreum) and pike ( Esox lucius) in Lake Simcoe. Canadian Journal of Zoology. 63(9): 2006-2012. https://doi.org/10.1139/z85-295.
  56. Storelli, M.M., Giacominelli-Stuffler, R. and Marcotrigiano, G.O., 2006. Relationship between total mercury concentration and fish size in two pelagic fish species: Implications for consumer health. Journal of Food Protection. 69(6): 1402-1405. https://doi.org/10.4315/0362-028X-69.6.1402.
  57. Landrum, P.F. and Fisher, S.W., 1999. Influence of Lipids on the Bioaccumulation and Trophic Transfer of Organic Contaminants in Aquatic Organisms. Lipids in Freshwater Ecosystems. 203-234. https://doi.org/10.1007/978-1-4612-0547-0_10.
  58. Andrew, T., Francis, E., Charles, M., Irene, N., Jesca, N., Ocaido, M., Drago, K., Celsus, S., Deborah, A. and Rumbeiha, W., 2016. Risk estimates for children and pregnant women exposed to mercury-contaminated Oreochromis niloticus and Lates niloticus in Lake Albert Uganda. Cogent Food & Agriculture. 2(1): 1-9. https://doi. org/10.1080/23311932.2016.1228732.
  59. Castaño, A., Cutanda, F., Esteban, M., Pärt, P., Navarro, C., Gómez, S., Rosado, M., López, A., López, E., Exley, K., Schindler, B.K., Govarts, E., Casteleyn, L., Kolossa-Gehring, M., Fiddicke, U., Koch, H., Angerer, J., Hond, E. Den, Schoeters, G. and Posada, M., 2015. Fish consumption patterns and hair mercury levels in children and their mothers in 17 EU countries. Environmental Research. 141: 58-68. https://doi.org/10.1016/j.envres.2014.10.029.
  60. Kuras, R., Janasik, B., Stanislawska, M., Kozlowska, L. and Wasowicz, W., 2017. Assessment of Mercury Intake from Fish Meals Based on Intervention Research in the Polish Subpopulation. Biological Trace Element Research. 179(1): 23-31. https://doi.org/10.1007/s12011-017-0939-9.
  61. Milhomem Filho, E.O., de Oliveira, C.S.B., Silveira, L.C.de L., Cruz, T.M., Souza, G.daS., Costa Junior, J.M.F. and Pinheiro, M.daC.N., 2016. A ingestão de pescado e as concentrações de mercúrio em famílias de pescadores de Imperatriz (MA). Revista Brasileira de Epidemiologia. 19(1): 14-25. https://doi.org/10.1590/1980-549720160001000 2.