رشد جبرانی ماهی سی باس آسیایی (Lates calcarifer) بعد از دوره های گرسنگی کوتاه مدت و غذادهی مجدد: تاثیرات بر عملکرد رشد، تغذیه، ترکیب لاشه و پارامترهای بیوشیمیایی خون

نوع مقاله : مقاله پژوهشی

نویسندگان

موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، تهران، ایران

10.22034/AEJ.2021.297647.2594

چکیده

در مطالعه حاضر اثرات دوره­ های گرسنگی و غذادهی مجدد بر عملکرد رشد و تغذیه، ترکیب بیوشیمیایی لاشه و پارامترهای بیوشیمیایی خون ماهی سی­ باس آسیایی (Lates calcarifer) مورد بررسی قرار گرفت. بعد از دو هفته سازگاری به شرایط آزمایشی، 6000 قطعه ماهی  با میانگین وزنی 6 ± 250 گرم در دو تیمار و یک گروه شاهد و به طور تصادفی بین 9 قفس پرورشی توزیع شدند. تیمار شاهد 2 بار در طول روز مورد تغذیه قرار می­گرفت. تیمار اول 3 روز گرسنگی و 12 روز تغذیه و تیمار دوم 6 روز گرسنگی و 24 روز تغذیه را تجربه کردند. نتایج حاصل از تحقیق حاضر نشان داد که میزان افزایش وزن در پایان آزمایش در تیمار شاهد و تیمار 2 به صورت معنی داری پایین تر از تیمار 1 بود (0/05>P) در صورتی ­که دوره های گرسنگی کوتاه مدت و غذادهی مجدد به نظر نمی رسد اختلاف قابل توجهی در میزان نرخ رشد ویژه اعمال کند (0/05<P). ضریب تبدیل غذایی و ضریب بهره­ وری غذایی در تیمار 1 به ترتیب کم ترین و بیش ترین میزان را نشان دادند  (0/05>P) در حالی ­که بیش ترین و کم ترین میزان آن ها نیز در گروه شاهد مشاهده گردید (0/05>P). دوره ­های گرسنگی و غذادهی مجدد تاثیر معنی ­داری  (0/05<P) بر خاکستر و رطوبت لاشه تیمارهای مختلف نداشت. با این حال، میزان چربی در گروه شاهد به صورت معنی دار بالاترین میزان را نشان داد و کم ترین میزان پروتئین به صورت معنی دار در تیمار 2 مشاهده گردید (0/05>P). تفاوت معنی داری در پارامترهای بیوشیمیایی خون بین تیمارهای مختلف وجود نداشت (0/05<P). با این حال ، مقدار تری گلیسیرید و آلبومین در ماهیان تیمار 1 و 2 بیش تر از ماهیان گروه شاهد بود و میزان گلوکز و پروتئین کل با کاهش دوره های گرسنگی کاهش می یابد. نتایج در خصوص عملکرد رشد و تغذیه و بازماندگی و پارامترهای بیوشیمیایی نشان داد که بهترین استراتژی جبرانی در ماهیان با 3 روز گرسنگی  و 12 روز غذادهی رخ داده است و این گونه می تواند در معرض گرسنگی کوتاه مدت بدون هیچ گونه تأثیر قابل توجهی بر رشد و عملکرد تغذیه قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Compensatory growth of Asian sea bass (Lates calcarifer) following short term starvation periods and refeeding: effects on growth and feeding performances, body composition and blood biochemical parameters

نویسندگان [English]

  • Sajad Fatahi
  • Mahmoud Hafezieh
  • Mansour Sharifian
Iran Fisheries Science Research Institute, Agricultural Research, Education and Promotion Organization, Tehran, Iran
چکیده [English]

In present study the effects of short-term starvation and refeeding on growth and feeding performances, body composition and blood biochemical parameters of Asian sea bass (Lates calcarifer) were studied. After 2 weeks adaptation to experimental condition, 6000 fish with an average initial weight of 250±6.0 g in two treatments and one control group were randomly distributed in nine farmed cages. Control treatment fed two times daily to apparent satiation. The first treatment (T1) 3 day starvation & 12 days refeeding and the second treatment (T2) 6 day starvation & 24 days refeeding experienced. The obtained results showed that the value of the weight gain in the control and T2 groups were significantly lower than T1 group, at the end of the experiment (P<0.05). Food conversion ratio and Food conversion efficiency values showed lower and higher in T1 group, while higher and lower their values were observed in the control group (P<0.05). However, short terms starvation and refeeding periods did not seem to exert a profound influence on specific growth rate (P>0.05). Short-term starvation and refeeding did not affect carcass ash and moisture (P>0.05). However, the fat value was significantly (P˂0.05) higher in the control group and protein value was significantly (P˂0.05) lower in the T2 group. There were no significant differences in blood biochemical parameters among different treatments (P>0.05). However, triglycerides and albumin values was higher in T2 and T3 fish than that in the T1 fish, and there was a tendency in glucose and total protein values to decrease with longer starvation periods. The results regarding growth and feeding performances, survival and biochemical parameters indicated that the best compensatory strategy occurred in the deprived fish with 3 days and refed with 12 days and that this species can be subjected to short term starvation without any significant effects on growth and feeding performance.         

کلیدواژه‌ها [English]

  • Lates calcarifer
  • Compensatory growth
  • Growth and feeding performance
  • Body composition
  • Blood biochemical parameters
  1. Ali, M., Nicieza, A. and Wootton, R.J., 2003. Compensatory growth in fishes: a response to growth depression. Fish Fish. 4: 147-190.
  2. Gaylord, G.T. and Gatlin III, D.M., 2001. Dietary protein and energy modification to maximize compensatory growth of channel catfish, Ictalurus punctatus. Aquac. 194: 337-348.
  3. Tacon, A.G.J. and Metian, M., 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquac. 285: 146-158.
  4. Bascinar, N., Cakmak, E., Cavdar Y. and Aksungur, N., 2007. The Effect of Feeding Frequency on Growth Performance and Feed Conversion Rate of Black Sea Trout, Salmo trout labrax Pallas, 1811. Turkish J. Fish. Aquat. Sci. 7: 13-17.
  5. Eroldogan O.T., Kumlu, M., Kiris, G.A. and Sezer, B., 2006. Compensatory growth response of Sparus aurata following different starvation and refeeding protocols. Nutr. 12: 203-210.
  6. Nafisi, M., Morshedi, V., Tarabi Mozanzadeh, M., Ahmadi, A.H. and Golshan, M., 2019. Biology and breeding of Asian sea bass (Lates calcarifer). Publications of the Iran Fisheries Science Research Institute. 615 p. (In Persian)
  7. Tian, X. and Qin, J.G., 2003. A single phase of food deprivation provoked compensatory growth in barramundi, Lates calcarifer. Aquac. 224: 169-179.
  8. Fakhrian, M., Morshedi, V. and Pirali Zefrehei, A.R., 2021. Effects of deprivation and compensatory growth feed on growth and feeding performance, body composition, blood parameters and structure of liver and intestine tissues in juvenile Siberian sturgeon (Acipenser baerii). Journal of Animal Environment. 13(3): 155-164. (In Persian)
  9. Hayward, R.S., Noltie, D.B. and Wang, N., 1997. Use of compensatory growth to double hybrid sunfish growth rates. Trans. Am. Fish. Soc. 126: 316-322.
  10. Nikki, J., Pirhonen, J., Jobling, M. and Karjalainen, J., 2004. Compensatory growth in juvenile rainbow trout, oncorhynchus mykiss (walbaum), held individually. Aquac. 235: 285-296.
  11. Zhu, X., Xie, S., Zou, Z., Lei, W., Cui, Y., Yang, Y. and Wootton, R.J., 2004. Compensatory growth and food consumption in gibel carp, Carassisus auratus gibelio, and Chinese long snout catfish, Leiocassis longirostris, experiencing cycles of feed deprivation and refeeding. Aquac. 241: 235-247.
  12. Wang, Y., Cui, Y., Yang, Y. and Cai, F., 2000. Compensatory growth in hybrid tilapia, Oreochromis mossambicus×niloticus, reared in seawater. Aquac. 189: 101-108.
  13. Heide, A., Foss, A., Stefansson, S.O., Mayer, I., Norbery, B., Roth, B., Jenssen, M.D., Nortvedt, R. and Imsland, A.K., 2006. Compensatory growth and fillet crude composition in juvenile Atlantic halibut: Effects of short term starvation periods and subsequent feeding. Aquac. 261: 109-117.
  14. Morshedi, V., Kochanian, P., Bahmani, M., Yazdani-Sadati, M.A., Pourali, H.R., Ashouri, Pasha-Zanoosi, H. and Azodi. M., 2013. Compensatory growth in sub-yearling Siberian sturgeon, Acipenser baeriiBrandt, 1869: Effects of starvation and refeeding on growth, feed utilization and body composition. J. Appl. Ichthyol. 29(5): 978-983.
  15. Azodi, M., Nafisi, M., Morshedi, V., Modarresi, M. and Faghih-Ahmadani, A., 2016. Effects of intermittent feeding on compensatory growth, feed intake and body composition in Asian sea bass (Lates calcarifer). Iran. J. Fish. Sci. 15(1): 144-156.
  16. Tamadoni, R., Nafisi Bahabadi, M., Morshedi, V., Bagheri, D. and Torfi Mozanzadeh, M., 2020. Effect of short‐term fasting and re‐feeding on growth, digestive enzyme activities and antioxidant defence in yellowfin seabream, Acanthopagrus latus (Houttuyn, 1782). Aquac. Res. 51(4): 1437-1445.
  17. Abdelghany, A.E. and Ahmad, M.H., 2002. Effects of feeding rates on growth and production of Nile tilapia, common carp and silver carp polycultured in fertilized ponds. Aquac. Res. 33: 415-423.
  18. Marcouli, P.A., Alexis, M.N., Andriopoulou, A. and Iliopoulou Georgudaki, J., 2006. Dietry lysine requirement of juvenile gilthead seabream (Sparus aurata). Aquac. Nutr. 12: 25-33.
  19. 1995. Official Methods of Analysis of AOAC International, vol. I. Agricultural Chemicals; Contaminants, Drugs, 16th edition. AOAC International, Arlington, VA. 1298 p.
  20. Quinton, J.C. and Blake, R.W., 1990. The effect of feed cycling and ration level on the compensatory growth response in rainbow trout, Oncorhynchus mykiss. J. Fish Biol. 37: 33-41.
  21. Zhu, X., Xie, S., Lei, W., Cui, Y., Yang, Y. and Wootton R.J., 2005. Compensatory growth in the Chinese long snout catfish, Leiocassis longirostris, following feed deprivation: Temporal patterns in growth, nutrient deposition, feed intake and body composition. Aquac. 248: 307-314.
  22. Bone, Q., Marshall, N.B. and Blaxter, J.H.S., 1995. Biology of Fishes, Chapman & Hall, 2-6 Boundary Row, London. 332 p.
  23. Dobson, S.H. and Holmes, R.M., 1984. Compensatory growth in the rainbow trout, Salmo gairdneri Richardson Fish Biol. 25: 649-656.
  24. Gall, G.A.E. and Crandell, C.A., 1992. The rainbow trout. Aquac. 100: 1-332.
  25. Eroldogan, O.T., Tasbozan, O. and Tabakoglu, S., 2008. Effects of restricted feeding regimes on growth and feed utilization of juvenile Gilthead Sea bream, Sparus aurats. J. World Aquac. Soc. 39: 267-274.
  26. Xie, S., Zhu, X., Cui, Y., Lei, W., Yang, Y. and Wootton, R.J., 2001. Compensatory growth in the gibel carp following feed deprivation: temporal patterns in growth, nutrient deposition, feed intake and body composition. J. Fish Biol. 58: 999-1009.
  27. Imani, A., Farhani, M., Yazdanparast, R., Bakhtiari, M., Shokoh Saljughi, Z. and Majazi Amiri, B., 2008. Nutrition and growth indicators in rainbow trout, Oncorhynchus mykiss, during different periods of food deprivation and re-feeding. Iranian Scientific Fisheries Journal. 18(2): 1-11. (In Persian)
  28. Sun, L., Chen, H. and Huang. L., 2006. Effect of temperature on growth and energy budget of juvenile cobia (Rachycentron canadum). Aquac. 261(3): 872-878.
  29. Eroldogan, O.T., Kumlu M. and Aktasx, M., 2004. Optimum feeding rate for European sea bass Dicentrarchus labrax reared in seawater and freshwater. Aquac. 231: 501-515.
  30. Russell, N.R. and Wootton, R.J., 1992. Satiation, digestive tract evacuation and return of appetite in the European minnow, Phoxinus phoxinus (Cyprinidae) following short periods of pre-prandial starvation. Environ. Biol. Fishes. 38: 385-390.
  31. Ali, M., Iqbal, R., Rena, S.A., Athar, M. and Iqbal, F., 2006. Effect of feed cycling on specific growth rate, condition factor and RNA/DNA ratio of Labeo rohita. Afr. J. Biotechnol, 17: 1551-1556.
  32. Adeli, M., Maleki, Sh., Ghelichi, A., Amiri, S., and Adeli, Z., 2018. Effect of starvation periods and compensatory growth on growth indices and body composition in fingerling common carp (Cypinus carpio). Journal of Animal Environment. 10(4): 301-308. (In Persian)
  33. Ebrahimi, Kh., Mohammadnejad Shamushki, M., Javadian, R., Keshavarz Divkolai, M., Karbakhsh Ravi, A.; 2013. Effect of Starvation and Compensatory Growthon Carcass Quality in Cyprinus Carpio (Linnaeus, 1758). Physiology and animal development. 7(3): 41-48. (In Persian)
  34. Salam, A., Ali, M. and Masud, S., 2000. Effect of various food deprivation regimes on body composition dynamics of thaila, Catla catla”. J. Sci. Res. 11: 26-32.
  35. Weatherley, A.H. and Gill, H.S., 1987. The Biology of Fish Growth, Academic Press, London. 443 p.
  36. Jobling, M. and Koskela, J., 1996. Inter individual variations in feeding and growth in rainbow trout during restricted feeding and in subsequent period of compensatory growth. Fish Biol. 49: 658-667.
  37. Love, R.M., 1980. The Chemical Biology of Fishes, Vol. 2. Academic Press, London. 943 p.
  38. Wilkins, N.P., 1967. Starvation of the Herring, Cluoea harengusL: Survival and some gross biochemical changes. Comp. Biochem. Physiol. 23: 503-518.
  39. Vijayan, M.M., Maule, A.G., Schreck, C.B. and Moon, T.W., 1993. Hormonal control of hepatic glycogen metabolism in food-deprived, continuously swimming coho salmon (Oncorhynchus kisutch). Can. J. Fish. Aquat. Sci. 50: 1676-1682.
  40. Tian, X. and Qin, J.G., 2004. Effects of previous ration restriction on compensatory growth in barramundi, Lates calcarifer. Aquac. 235: 273-283.
  41. Azodi, M., Ebrahimi, E., Farhadian, O., Mahboobi-Soofiani, N. and Morshedi, V., 2015. Compensatory growth response of rainbow trout Oncorhynchus mykiss Walbaum following short starvation periods. Chin. J. Oceanol. Limnol. 33(4): 928-933.
  42. Denton, J.E. and Yousef, M.K., 1976. Body composition and organ weights of rainbow trout, Salmo gairdneri. J. Fish Biol. 8: 489-499.
  43. Miglavs, I. and Jobling, M., 1989. The effects of feeding regime on proximate body composition and patterns of energy deposition in Juvenile Arctic Charr, Salvelinus alpines.  Fish Biol. 35: 1-11.
  44. Navarro, I. and Gutie´rrez, J., 1995. Fasting and starvation. In: Hochachka, P.W. and Mommsen, T.P., 1998. (eds) Biochemistry and molecular biology of fishes. Elsevier, New York. 4: 393-433.
  45. Zammit, V.A. and Newsholme., E.A., 1979. Activities of enzymes of fat and ketone-body metabolism and effects of starvation on blood concentrations of glucose and fat fuels in teleost and elasmobranch. Fish Physiol. Biochem. 184: 313-322.
  46. Hochachka, P.W. and Sinclair, A.C., 1962. Glycogen stores in trout tissues before and after stream planting. Trans. Am. Fish. Soc. 19: 127-136.
  47. Ebrahimi Dorche, E., Zare Shahraki, M. and Borhani, M., 2017. Effects of starvation and re-feeding on growth performance and blood plasma of rainbow trout (Oncorhynchus mykiss). Journal of Aquatic Ecology. 7(1): 146-151. (In Persian)
  48. Caruso, G., Denaro, M.G., Caruso, R., Genovese, L., Mancari, F. and Maricchiolo, G., 2012. Short fasting and refeeding in red porgy (Pagrus pagrus, Linnaeus 1758): response of some haematological, biochemical and nonspecific immune parameters. Mar. Environ. Res. 81: 18-25.
  49. Pe´rez-Jime´nez, A., Guedes, M.J., Morales, A.E. and Oliva-Teles, A., 2007. Metabolic responses to short starvation and refeeding in Dicentrarchus labrax. Effect of dietary composition. Aquac. 265: 325-335.
  50. Kumar, S., Sahu, N.P., Pal, A.K., Choudhury, D., Yengkokpam, S. and Mukherjee, S.C., 2005. Effect of dietary carbohydrate on haematology, respiratory burst activity and histological changes in L. Rohita Fish Shellfish Immunol. 19: 331-344.
  51. Falahatkar, B., Abbasalizadeh, A., Tolouei, M.H. and Jafarzadeh, A., 2009. Compensatory growth following food deprivation in great sturgeon. 6th Symposium on sturgeon. 241-243. (In Persian)
  52. Furne´, M., Morales, A.E., Trenzado, C.E., Garcı´a-Gallego, M., Hidalgo, M.C., Domezain, A. and Rus, A.S., 2012. The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. J. Comp. Physiol. 182: 63-76.
  53. Pe´rez-Jime´nez, A., Cardenete, G., Hidalgo, M.C., Garcia-Alcazar, A., Abellan, E. and Morales, A.E., 2012. Metabolic adjustments of Dentex dentex to prolonged starvation and re-feeding. Fish Physiol. Biochem. 38: 1145-1157.