اثر سطوح مختلف شوری آب مصرفی بر تجزیه‌پذیری شکمبه ای ماده خشک و پروتئین یونجه با استفاده از روش کیسه های نایلونی در گوسفندان توده شال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، واحد شبستر، دانشگاه آزاد اسلامی، شبستر، ایران

2 موسسه تحقیقات علوم دامی، سازمان تحقیقات آموزش و ترویج کشاورزی، کرج، ایران

10.22034/AEJ.2022.321801.2717

چکیده

کمیت و کیفیت آب از اساسی­ ترین چالش ­های زیست محیطی مناطق خشک و نیمه خشک جهان از جمله ایران محسوب می‌شود. در شرایط حاضر، کمبود آب و شوری آن یکی از مهم­ترین تهدیدهای پیش روی صنعت پرورش دام و طیور در ایران و حتی بسیاری از مناطق جهان است. هدف از این پژوهش، مطالعه اثر سطوح مختلف شوری آب مصرفی بر تجزیه­ پذیری شکمبه ­ای ماده خشک و پروتئین خام علوفه خشک یونجه با استفاده از روش کیسه­ های نایلونی در گوسفندان شال ایرانی می‌باشد. تجزیه­پذیری ماده خشک و پروتئین خام یونجه با استفاده از هشت راس قوچ توده شال کانوله‌گذاری شده در شکمبه که سطوح مختلف شوری آب شامل گروه شاهد (480)، 4000، 8000 و 12000 میلی‌گرم بر لیتر را دریافت کردند با روش کیسه‌های نایلونی در ساعات مختلف، تعیین شد. نتایج نشان داد از نظر تجزیه­ پذیری ماده خشک در بیش تر زمان‌های انکوباسیون تفاوت معنی‌داری بین تیمارهای آزمایشی وجود داشت، اما از نظر تجزیه‌پذیری پروتئین به غیر از زمان‌های صفر، 2 و 72 ساعت انکوباسیون تفاوت معنی‌داری مشاهده نشد. در طولانی‌ترین زمان انکوباسیون، با افزایش سطح شوری، تجزیه­ پذیری ماده خشک افزایش یافت. بین تیمارهای آزمایشی از نظر تجزیه ­پذیری موثر ماده خشک تفاوت معنی‌داری مشاهده شد، اما تجزیه­ پذیری موثر پروتئین تحت تاثیر تیمارهای آزمایشی قرار نگرفت. با افزایش سطح شوری، بخش پروتئین سریع تجزیه‌شونده کاهش و بخش کند تجزیه‌شونده به طور معنی‌داری افزایش یافت. از نظر پروتئین قابل متابولیسم بین تیمارهای آزمایشی تفاوت معنی‌داری وجود داشت و بیش ترین مقدار آن در تیمار حاوی بالاترین سطح شوری مشاهده شد اما بین سطوح پایین‌تر شوری و تیمار شاهد تفاوت معنی‌داری وجود نداشت. به طور کلی به نظر می‌رسد افزایش سطح شوری آب، تجزیه پذیری شکمبه‌ای یونجه را تحت تاثیر قرار داده و تیمار با سطح شوری 12000 میلی‌گرم بر لیتر مقدار پروتئین سریع تجزیه‌شونده را کاهش و  پروتئین قابل متابولیسم را افزایش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of different levels of water salinity on the rumen degradability of dry matter and protein of alfalfa hay using nylon bags technique in Iranian shal sheep

نویسندگان [English]

  • Mir ali Pishdadi motlagh 1
  • Ramin salamatdoust nobar 1
  • Naser Maheri-Sis 1
  • Amirreza Safaei 2
  • Abolfazl Aghajanzadeh-Golshani 1
1 Department of Animal Science, Shabestar Branch, Islamic Azad University, Shabestar, Iran
2 Animal Science Research Institute, Agricultural Education and Extension Research Organization, Karaj, Iran
چکیده [English]

The quantity and quality of water are of the most important environmental challenges in the world's arid and semi-arid regions, including Iran. In the present conditions, water shortage as well as water salinity are the most important threats to the livestock and poultry industry in Iran and even many parts of the world. The aim of this study was to investigate the effect of different levels of water salinity on rumen degradability of dry matter and crude protein of alfalfa hay using nylon bags technique in Iranian shal rams. Rumen degradability of dry matter and crude protein of alfalfa hay were determined by nylon bags technique at different times using eight cannulated Iranian Shal rams which received different levels of drinking saline water including control group (480), 4000, 8000 and 12000 mg/L. The results showed that there was a significant difference between the experimental treatments in terms of dry matter degradability in most incubation times, but there was no significant difference in protein degradability (except for 0, 2 and 72 h incubation times). At the longest incubation time, dry matter degradability increased with increasing salinity level. There was a significant difference between the treatments in terms of effective degradability of dry matter; but the effective degradability of the protein was not affected by the experimental treatments. Quickly degradable protein (QDP) decreased and slowly degradable protein (SDP) increased by enhancing salinity level. Metabolizable protein (MP) was significantly different between experimental treatments. The highest amount of MP was observed in the highest salinity level treatment and there was no significant difference between other salinity levels and control treatment. In general, it seems that increasing salinity level affects rumen degradability of alfalfa hay. The treatment containing 12000 mg/L TDS decreased the amount of quickly degradable protein and increased the metabolizable protein.

کلیدواژه‌ها [English]

  • Water salinity
  • Rumen degradability
  • Metabolizable protein
  • Alfalfa
  • Nylon bags
  1. Madani, K., AghaKouchak, A. and Mirchi, A., 2016. Iran’s socio-economic drought: challenges of a water bankrupt nation. Iran Stud-UK. 49(6): 997-1016. https://DOI.org/10.1080/00210862.2016. 1259286.
  2. Vosooghi-Postindoz, V., Tahmasbi, A., Naserian, A.A., Valizade, R. and Ebrahimi, H., 2018. Effect of water deprivation and drinking saline water on performance, blood metabolites, nutrient digestibility, and rumen parameters in Baluchi lambs. Iran. J. Appl. Anim. Sci. 8: 445-456.
  3. Karandish, F. and Hoekstra, A.Y., 2017. Informing national food and water security policy through water footprint assessment: the case of Iran. Water. 9(831): 1-25. https://DOI.org/10.3390/w9110831.
  4. Khalilipour, G., Maheri-Sis, N. and Shaddel-Teli, A., 2019. Effects of saline drinking water on growth performance and mortality rate of Japanese quails (Coturnix coturnix Japonica). Egypt. J. Vet. Sci. 50(2): 151-157. DOI.10.21608/ejvs.2019.12968.1080.
  5. Atekwana, E.A., Rowe, R.S., Dale Werkema, J.R. and Franklyn, D.L., 2004. The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. J. Appl. Geophys. 56(4): 281-294. DOI:1016/j.jappgeo.2004.08.003.
  6. Fahmy, A.A., 1993. Some factors affecting the nutritional performance of camels under desert conditions. [Cairo]: Faculty of Agric, Al-Azhar University Egypt.
  7. National Research Council (NRC). 2001. Nutrient Requirements of Dairy Cattle. 7th revised edition. National Academy of Science. Washington, DC.
  8. National Research Council (NRC). 2007. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids. National Academy Press, Washington, DC, USA.
  9. Solomon, R., Miron, J., Ben-Ghedalia, D. and Zomberg, Z., 1995. Performance of high producing dairy cows offered drinking water of high and low salinity in the Arava Desert. J. Dairy 78: 620-624.
  10. Tomas, F.M., Jones, G.B., Potter, B.J. and Langsford, G.L., 1973. Influence of saline drinking water on mineral balances in sheep. Aust. J. agric. Res. 24: 377-386.
  11. Attia, I., Ahlam, S.A., Abdo, R. and Asker, A.R.T., 2008. Effect of salinity level in drinking water on feed intake, nutrient utilization, water intake and turnover and rumen function in sheep and goats. Egypt. J. Sheep Goat Sci. 3(1): 77-92.
  12. Aghajanzadeh-Golshani, A., Maheri-Sis, N., Salamat Doust-Nobar, R., Ebrahimnezhad, Y. and Ghorban, A., 2020. Estimating nutritional value of wheat and barley grains by in vitro gas production technique using rumen and faeces liquor of Gezel rams. J. Anim. Environ. 12(2): 45-52. DOI: 22034/aej.2020.105888. (In Persian)
  13. Shokrani Gheshlagh, N., Paya, H., Taghizadeh, A. and Mohammadzadeh, H., 2020. Determination of nutritive values of the green and black tea waste in ruminant nutrition using in vitro gas production technique. J. Anim. Environ. 12(2): 53-60. DOI: 22034/aej.2020.105674. (In Persian)
  14. Mirzaei-Aghsaghali, A., Maheri-Sis, N., Mirza-Aghazadeh, A., Safaei, A.R., Houshangi, A.F. and Aghajanzadeh-Golshani, A., 2008. Use of nylon bag technique to determine nutritive value and degradation kinetics of Iranian alfalfa varieties. Asian J. Anim. Vet. Adv. 3(4): 214-221. DOI: 10.3923/ajava.2008.214.221.
  15.  AOAC. 1990. Official methods of analysis. Association of official analytical chemists. Virginia, USA: AOAC.
  16. Van Soest, P.J., Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy 74: 3583-3597.
  17. Chen, X.B., 1995. Fitcurve macro. IFRU, The Macaulay Institute, Aberdeen, UK.
  18. Orskov, E.R. and McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurement weight according to rate of passage. J. Agr. Sci. 92: 499-503. https://doi.org/10.1017/S0021859600063048.
  19.  AFRC. 1995. Energy and Protein requirements of ruminants. An Advisory Manual Prepared by the AFRC Technical committee on Research to Nutrition, CAB International, Wallingford, UK.
  20. SAS. 2001. SAS for Windows Version 8.02, SAS Institute Inc., Cary, NC, USA.
  21. Taghizadeh, A., Shojaghias, J., Moghadam, G.H.A., Janmohammadi, H. and Yasan, P., 2001. Determination of dry matter and crude protein degradability of some roughage and concentrate feedstuffs by in-situ in sheep. Anim. Sci. Res. (University of Tabriz). 11(3): 93-100. (In Persian)
  22. Aghajanzadeh-Golshani, A., Maheri-Sis, N., Salamat Doust-Nobar, R., Ebrahimnezhad, Y. and Ghorbani, A., 2015. Developing a modified in vitro gas production technique to replace the nylon bag method of evaluating protein degradation of alfalfa hay in ruminants. Iran. J. Appl. Anim. Sci. 5(2): 339-345.
  23. Safaei, A.R., Torbatinejad, N.M., Mansour, H. and Zerehdaran, S., 2015. Determination of nutrient composition, degradation (DM, OM and CP) parameters and metabolic protein of grape and lime pomaces by in situ technique. Anim. Sci. Res. (University of Tabriz). 25(1): 187-199. (In Persian)
  24. Paya, H., Taghizadeh, A., Janamohamadi, H. and Moghadam, G.A., 2008. Ruminal dry matter and crude protein degradability of some tropical (Iranian) feeds used in ruminant diets estimated using the in situ and in vitro techniques. J. Biol. Sci. 3(7): 720-725.
  25. Kattnig, R.M., Pordomingo, A.J., Schneberger, A.G., Duff, G.C. and Wallace, J.D., 1992. Influence of saline water on intake, digesta kinetics, and serum profiles of steers. J. Range Manage. 45(6): 514-518.
  26. Wilson, A., 1966. The tolerance of sheep to sodium chloride in food or drinking water. Aust. J. Agric. Res. 17(4): 503-514. DOI:10.1071/AR9660503.
  27. Yape Kii, W. and Dryden, McL.G., 2005. Effect of drinking saline water on food and water intake, food digestibility, and nitrogen and mineral balances of rusa deer stags (Cervus timorensis russa). Anim. Sci. 81(1): 99-105. DOI: https://doi.org/10.1079/ASC41070099.
  28. Yousfi, I., Salem, H.B., Aouadi, D. and Abidi, S., 2016. Effect of sodium chloride, sodium sulfate or sodium nitrite in drinking water on intake, digestion, growth rate, carcass traits and meat quality of Barbarine lamb. Small Rumin. Res. 143: 43-52. DOI: 10.1016/j.smallrumres. 2016.08.013.
  29. Yousfi, I. and Salem, H.B., 2017. Effect of increasing levels of sodium chloride in drinking water on intake, digestion and blood metabolites in Barbarine sheep. Annales de l'INRAT. 90: 202-2014. DOI: 10.12816/0028688.
  30. Sharma, A., Kundu, S., Tariq, H., Kewalramani, N. and Yadav, R., 2017. Impact of total dissolved solids in drinking water on nutrient utilisation and growth performance of Murrah buffalo calves. Livest. Sci. 198: 17-23. DOI : 1016/j.livsci.2017.02.002.
  31. Alves, J.N., Araujo, G.G.L., Neto, S.G., Voltolini, T.V., Santos, R.D., Rosa, P.R., Guan, L., Mcallister, T. and Neves, A.L.A., 2017. Effect of increasing concentrations of total dissolved salts in drinking water on digestion, performance and water balance in heifers. J. Agr. Sci. 155: 847–856. DOI:10.1017/S0021859617000120.
  32. Hemsley, J.A., Hogan, J.P. and Weston, R.H., 1975. Effect of high intakes of sodium chloride on the utilization of a protein concentrate by sheep II. Digestion and absorption of organic matter and electrolytes. Aust. J. Agric. 26: 715-727. https://DOI.org/10.1071/AR9750715.
  33. El Shaer, H.M. and Squires, V.R., 2015. Halophytic and Salt-Tolerant Feedstuffs. 1st ed. CRC Press: Boca Raton. 453 p.
  34. Pang, H., Xin, X., He, J., Cui, B., Guo, D., Liu, S., Yan, Z., Liu, C., Wang, X. and Nan, J., 2020. Effect of NaCl Concentration on Microbiological Properties in NaCl Assistant Anaerobic Fermentation: Hydrolase activity and microbial community distribution. Front. Microbiol. 11: 1-10. https://doi.org/10.3389/fmicb.2020.589222.
  35. Attia, I.S.A., 2008. Role of Minerals in Halophyte Feeding to Ruminants. In: Prasad MNV, editors. Trace Elements as Contaminants and Nutrients. Canada: John Wiley & Sons. 701-720.
  36. Potter, B.J., Walker, B.J. and Forrest, W.W., 1972. Changes in intraruminal function of sheep when drinking saline water. Br. J. Nutr. 27: 75-83.