تولید سلول های بنیادی پرتوان القایی از سلول های خون محیطی با استفاده از ریزمولکول ها

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه زیست شناسی سلولی و مولکولی، دانشکده علوم زیستی، واحد تهران شمال، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه زیست شناسی سلول و مولکولی، دانشکده علوم و فناوری های زیستی، دانشگاه شهید بهشتی، تهران، ایران

3 آزمایشگاه طب بازساختی و نوآوری های زیست پزشکی، انستیتو پاستور ایران، تهران، ایران

4 گروه بانک سلولی، انستیتو پاستور ایران، تهران، ایران

10.22034/AEJ.2021.297827.2595

چکیده

تولید سلول­ های بنیادی پرتوان القایی با استفاده از روش ­های ایمن و غیرویروسی نقش به­ سزایی در مهندسی بافت و طب بازساختی دارد. در این تحقیق سعی شد تا سلول ­های بنیادی پرتوان القایی را در حضور انواعی از ریزمولکول­ های شیمیایی از سلول­ های خون محیطی تولید نمود. سلول ­های تک هسته ­ای خونی با استفاده از روش فایکول جداسازی و تکثیر آن­ ها توسط لیپوپلی ساکارید القاء گردید. بازبرنامه ­ریزی لنفوسیت­ های استخراج شده با استفاده از ترکیبی از ریزمولکول­ ها مانند آزاسیتیدین، سدیم بوتیرات، کنپائولون و رپساکس که عمدتاً مدولاتورهای اپی­ ژنتیکی موثر بر ژن ­های دخیل در پرتوانی (Oct4،Sox2 ،Klf4 ، C-Myc) صورت پذیرفت. در ادامه سلول­ های بنیادی پرتوان القایی حاصله بر روی لایه تغذیه کننده فیبروبلاست جنین موش انتقال داده شده و مورد شناسایی قرار گرفتند. لیپوپلی ساکارید به ­طور چشمگیری منجر به افزایش تعداد سلول­ های خونی تک هسته­ ای بعد از 5 ساعت گردید. سلول­ های خونی پس از 14 روز تیمار با ترکیبات شیمیایی و ریزمولکول ­های مورد نظر به­ طور موفقیت ­آمیزی به سلول­ های بنیادی پرتوان القایی تبدیل شدند و سپس جهت تکثیر و حفظ خاصیت پرتوانی بر روی محیط حمایتی فیبروبلاست جنین موش قرار گرفتند. استفاده از ترکیبات شیمیایی و ریزمولکول­ ها روش ایمن و ارزان برای تولید موثر سلول­ های بنیادی پرتوان القایی از سلول ­های خونی می­ باشد و به ­کارگیری فیبروبلاست جنین موش به­ عنوان لایه تغذیه­ کننده فاکتورهای رشد مورد نیاز جهت حفظ حالت پرتوانی را تولید می­ کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Generation of induced pluripotent stem cells from peripheral blood cells using small molecules

نویسندگان [English]

  • Javad Kazemi 1
  • Hosein Shahsavarani 2 3
  • Parviz Pakzad 1
  • Mohammadali Shokrgozar 3 4
1 Department of Cellular and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
2 Department of Cell and Molecular Sciences, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran ،Iran
3 Laboratory of Regenerative Medicine and Biomedical Innovation, Pasteur Institute of Iran, Tehran, Iran
4 Department of National Cell Bank, Pasteur Institute of Iran, Tehran, Iran
چکیده [English]

Generation of induced pluripotent stem cells (iPSCs) using safe and non-viral methods play pivotal role in tissue engineering and regenerative medicine. In current study, we aimed to generate iPSCs from peripheral blood mononuclear cells (PBMC) in the presence of different small molecule and chemical compounds. PBMCs were isolated using Ficoll gradient method and their proliferation was induced by lipopolysaccharide (LPS). Reprogramming of extracted PBMCs was mediated using a combination of small molecule such as 5-Azacitidine, Kenpaullone, sodium butyrate and RepSox, which are generally epigenetic modulator of genes (OCT4, Sox2, Klf4, c-Myc) involved on pluripotent cell. Then, resulted pluripotent stem cells were cultured and identified on feeder MEFs. LPS effectively caused an increase in the number of PMBCs after 5 hours. Blood cells were successfully converted to iPSCs after treatment with different chemical compounds and small molecules for 14 days and then transferred on supportive mouse embryonic fibroblasts. The use of small molecules is a safe and cost-effective method for generating iPSCs from PBMCs. Mouse embryonic fibroblasts serve as a feeder layer for production of growth factors and preserving pluripotency of stem cells.

کلیدواژه‌ها [English]

  • Induced pluripotent stem cells
  • Mouse embryonic fibroblasts
  • Chemical small molecule compounds
  • Blood cells
  1. Singhal, P.K., Sassi, S., Lan, L., Au, P., Halvorsen, S.C. and Fukumura, D., 2016. Mouse embryonic fibroblasts exhibit extensive developmental and phenotypic diversity. Proceedings of the National Academy of Sciences. 113(1): 122-127.
  2. Jopling, C., Boue, S. and Belmonte, C.I., 2011. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nature reviews Molecular cell biology. 12(2): 79-89.
  3. Takahashi, K., Tanabe, K., Ohnuki, M,, Narita, M., Ichisaka, T. and Tomoda, K., 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell. 131(5): 861-872.
  4. Takahashi, K. and Yamanaka, S., 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell. 126(4): 663-676.
  5. Ma, X., Kong, L. and Zhu, S., 2017. Reprogramming cell fates by small molecules. Protein & cell. 8(5): 328-348.
  6. Lipinski, C.A., 2004. Lead-and drug-like compounds: the rule of five revolution. Drug discovery today: Technologies. 1(4): 337-341.
  7. Schuppan, D. and Pinzani, M., 2012. Anti-fibrotic therapy: lost in translation? Journal of hepatology. 56:
    S66-S74.
  8. Dvorak, H.F., Weaver, V.M., Tlsty, T.D. and Bergers, G., 2011. Tumor microenvironment and progression. Journal of surgical oncology. 103(6): 468-474.
  9. Ishii, G., Ochiai, A. and Neri, S., 2016. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment. Advanced drug delivery reviews. 99: 186-196.
  10. Öhlund, D., Elyada, E. and Tuveson, D., 2014. Fibroblast heterogeneity in the cancer wound. Journal of Experimental Medicine. 23(8): 211.
  11. Pickup, M., Novitskiy, S. and Moses, H.L., 2013. The roles of TGFβ in the tumour microenvironment. Nature Reviews Cancer. 13(11): 788-799.
  12. Wijten, P., van Holten, T., Woo, L.L., Bleijerveld, O.B., Roest, M. and Heck, A.J., 2013. High precision platelet releasate definition by quantitative reversed protein profiling- brief report. Arteriosclerosis, thrombosis, and vascular biology. 33(7): 1635-1638.
  13. Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., Waknitz, M.A., Swiergiel, J.J. and Marshall, V.S., 1998. Embryonic stem cell lines derived from human blastocysts. Science. 282(5391): 1145-1147.
  14. Amit, M., Carpenter, M.K., Inokuma, M.S., Chiu, C.P., Harris, C.P. and Waknitz, M.A., 2000. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Developmental biology. 227(2): 271-278.
  15. Al Abbar, A., Ngai, S.C., Nograles, N., Alhaji, S.Y. and Abdullah, S., 2020. Induced pluripotent stem cells: Reprogramming platforms and applications in cell replacement therapy. BioResearch open access. 9(1): 121-136.
  16. Xu, C., Inokuma, M.S., Denham, J., Golds, K., Kundu, P. and Gold, J.D., 2001. Feeder-free growth of undifferentiated human embryonic stem cells. Nature biotechnology. 19(10): 971-974.
  17. Ludwig, T.E., Levenstein, M.E., Jones, J.M., Berggren, W.T., Mitchen, E.R. and Frane, J.L., 2006. Derivation of human embryonic stem cells in defined conditions. Nature biotechnology. 24(2): 185-187.
  18. Liu, B., Chen, S., Xu, Y., Lyu, Y., Wang, J. and Du, Y., Chemically defined and xeno-free culture condition for human extended pluripotent stem cells. Nature communications. 12(1): 1-12.
  19. Walsh, P., Truong, V., Nayak, S., Saldías Montivero, M., Low, W.C. and Parr, A.M., 2020. Accelerated differentiation of human pluripotent stem cells into neural lineages via an early intermediate ectoderm population. Stem Cells. 38(11): 1400-1408.
  20. Dakhore, S., Nayer, B. and Hasegawa, K., 2018. Human pluripotent stem cell culture: current status, challenges and advancement. Stem cells international.
  21. Skottman, H. and Hovatta, O., 2006. Culture conditions for human embryonic stem cells. Reproduction. 132(5): 691-698.
  22. Desai, N., Rambhia, P. and Gishto, A., 2015. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reproductive Biology and Endocrinology. 13(1): 1-15.
  23. Zheng, J., Yun, W., Park, J., Kang, P.J., Lee, G. and Song, G., 2020. Long-term expansion of directly reprogrammed keratinocyte-like cells and in vitro reconstitution of human skin. Journal of biomedical science. 27(1): 1-16.
  24. Oliveira, T., Costa, I., Marinho, V., Carvalho, V., Uchôa, K. and Ayres, C., 2018. Human foreskin fibroblasts: From waste bag to important biomedical applications. Journal of Clinical Urology. 11(6): 385-394.
  25. Li, P., Wang, S., Zhan, L., He, X., Chi, G. and Lv, S., 2017. Efficient feeder cells preparation system for large scale preparation and application of induced pluripotent stem cells. Scientific reports. 7(1): 1-15.
  26. Soong, Y.K., Huang, S.Y., Yeh, C.H., Wang, T.H., Chang, K.H. and Cheng, P.J., 2015. The use of human amniotic fluid mesenchymal stem cells as the feeder layer to establish human embryonic stem cell lines. Journal of tissue engineering and regenerative medicine. 9(12): E302-E307.
  27. Zhang, K., Cai, Z., Li, Y., Shu, J., Pan, L. and Wan, F. 2011. Utilization of human amniotic mesenchymal cells as feeder layers to sustain propagation of human embryonic stem cells in the undifferentiated state. Cellular Reprogramming (Formerly Cloning and Stem Cells). 13(4): 281-288.
  28. Eiselleova, L., Peterkova, I., Neradil, J., Slaninova, I., Hampl, A. and Dvorak, P., 2004. Comparative study of mouse and human feeder cells for human embryonic stem cells. International Journal of Developmental Biology. 52(4): 353-563.
  29. Tan, F., Qian, C., Tang, K., Abd-Allah, S.M. and Jing, N., 2015. Inhibition of transforming growth factor β (TGF-β) signaling can substitute for Oct4 protein in reprogramming and maintain pluripotency. Journal of Biological Chemistry. 290(7): 4500-4511.
  30. Mullen, A.C. and Wrana, J.L., 2017. TGF-β family signaling in embryonic and somatic stem-cell renewal and differentiation. Cold Spring Harbor perspectives in biology. 9(7): a022186.
  31. Vallier, L., Touboul, T., Brown, S., Cho, C., Bilican, B. and Alexander, M., 2009. Signaling pathways controlling pluripotency and early cell fate decisions of human induced pluripotent stem cells. Stem cells. 27(11): 2655-2666.
  32. Gordeeva, O., 2019. TGFβ family signaling pathways in pluripotent and teratocarcinoma stem cells’ fate decisions: balancing between self-renewal, differentiation, and cancer. Cells. 8(12): 1500.