بررسی عملکرد و ترکیبات بیوشیمیایی قارچ خوراکی شاه ‌صدف (Pleurotus eryngii) در پالایش زیستی کادمیوم (Cd) و سرب (Pb) از محیط کشت مایع

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زیست شناسی، واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

10.22034/AEJ.2021.306467.2646

چکیده

با توجه به توسعه روزافزون فعالیت ­های بشر به ویژه پیشرفت صنعت، آلودگی با فلزات سنگین از قبیل کادمیوم (Cd) و سرب (Pb) درحال تبدیل شدن به یک مسئله بسیار جدی برای محیط زیست است، که حیات زیستمندان آن را با مخاطره مواجه می­ کند. امروزه از قارچ پالایی (Mycoremediation) به عنوان روشی سودمند، ارزان قیمت و کارا برای کاهش آلودگی‌های فلزات سنگین یاد می­ شود. در این مطالعه میزان کارایی قارچ  Pleurotus eryngii در پالایش فلزات سنگین سرب  و کادمیوم در محیط کشت مایع مورد بررسی قرار گرفت. در همین راستا به جهت بررسی عملکرد قارچ فوق، میزان جذب فلزات سنگین، غلظت پروتئین، میزان آنزیم کاتالاز و میزان ترکیبات فنلی و فلانوئیدی در مواجهه با فلزات سنگین سرب و کادمیوم در چهار گروه آزمایشی با رقت­ های  0، 150، 250 و 350 ppm  سنجیده شد. بالاترین میزان جذب فلزات سنگین برای سرب و کادمیوم به ترتیب 0/57±52/33 و 1/20±50/00 میکروگرم بر گرم بوده است. هم چنین نتایج با افزایش غلظت فلزات ذکر شده میزان فنل، فلانوئید، پروتئین، کاتالاز را به ترتیب برای سرب و کادمیوم 0/50±3/23 و 0/08 ±3/50 و 0/12±27/26 و 0/08±28/76 میلی‌گرم در گرم، 0/01±0/65 و 0/01±0/65 میلی‌گرم در میلی‌لیتر و 0/05±0/50 و 0/05 ±0/20  protein unit min-1mg-1 نشان داد.با توجه به نتایج به دست آمده اختلاف معنی ­دار میان گروه شاهد و گروه­ های آزمایشی مشاهده شد (0/001>P). در مجموع با توجه به نتایج به دست آمده به نظر می­ رسد قارچ شاه ­صدف P. eryngii  می ­تواند به عنوان کاندیدای مناسب جهت قارچ پالایی مورد استفاده قرار بگیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the performance and biochemical composition of (Pleurotus eryngii)in Mycoremediation of Cadmium (Cd) and Lead (Pb) from the liquid growth medium

نویسندگان [English]

  • Nasim Goligar
  • Sara Saadatmand
  • Ramzan Ali Khavarinejad
Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Considering human activities, especially industrial development, pollution with heavy metals such as Cadmium (Cd) and Lead (Pb) is becoming a critical challenge for the environment, which may endanger human life. Nowadays, Mycoremediation is mentioned as a useful, economic and efficient way to reduce heavy metal pollution. In this study, the efficiency of Pleurotus eryngii in refining heavy metals Lead (Pb) and Cadmium (Cd) in a liquid growth medium was investigated. ]n order to evaluate the performance of the above fungus, the amount of heavy metals uptake, protein concentration, the amount of catalase enzyme, and the amount of phenolic and flavonoid compounds in the presence of heavy metals (Lead and Cadmium) in four experimental groups with dilution levels of 0, 150, 250 and 350 ppm was measured. The highest absorption rates of heavy metals for lead and cadmium were 52.33±0.57 and 50.00±1.20, respectively. Also, the results increased the concentrations of phenols, flavonoids, proteins, and catalase by increasing the concentrations of the mentioned metals respectively (3.23±0.50, 3.50±0.08) and (27.26±0.12, 28.76±0.08) mgg-1, (0.65±0.01, 0.65±0.01) mgml-1, (0.20±0.05, 0.50±0.05) protein unit min-1mg-1 showed that the results. According to the results, a significant difference was observed between the control group and the experimental groups (P<0.001). In general, according to the obtained results, it seems that P. eryngii can be used as a suitable candidate for mycoremediation

کلیدواژه‌ها [English]

  • Edible Mashroom
  • Heavy metal
  • Mycoremediation
  • Pollution
  1. Rahmani, M., Azari, T. and Mollaaghajanzadeh, S., 2020. Effects of Heavy Metal Contamination Caused by Residual Leachate on Forest Soil in Babol Anjilsi Region, Iran. Geographical Research. 35(1): 31-42. (In Persian)
  2. Singh, R., Gautam, N., Mishra, A. and Gupta, R., 2011. Heavy metals and living systems: An overview. Indian journal of pharmacology. 43(3): 246-253.
  3. Velayatzadeh, M. and Abdollahi, S., 2010. Study and comparison of Hg, Cd and Pb accumulation in the muscle and liver tissues of Aspius vorax in Karoon River,in winter season. Journal of Animal Environment. 2(4): 65-72. (In Persian)
  4. Valko, M., Morris, H. and Cronin, M.T., 2005. Metals, toxicity, and oxidative stress. Current Medical Chemistry. 12: 1161-1208.
  5. Hon, K.L.E., Wang, S.S., Hung, E.C., Lam, H.S., Lui, H.H., Chow, C.M., Ching, G.K., Fok, T.F. and Leung, T.F., 2010. Serum levels of heavy metals in childhood eczema and skin diseases: friends or foes. Pediatric allergy and immunology. 21(5): 831-836.
  6. Matés, J.M., Segura, J.A., Alonso, F.J. and Márquez, J., 2010. Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radical Biology and Medicine. 49(9): 1328-1341.
  7. Woimant, F. and Trocello, J.M., 2014. Disorders of heavy metals. Handbook of clinical neurology. 120: 851-864.
  8. Bortey-Sam, N., Ikenaka, Y., Akoto, O., Nakayama S.M., Asante, K.A., Baidoo, E., Obirikorang, C., Mizukawa, H. and Ishizuka, M., 2018. Association between human exposure to heavy metals/metalloids and occurrences of respiratory diseases, lipid peroxidation, and DNA damage in Kumasi, Ghana. Environmental pollution. 235: 163-170.
  9. Yang, A.M., Lo, K., Zheng, T.Z., Yang, J.L., Bai, Y.N., Feng, Y.Q., Cheng, N. and Liu, S.M., 2020. Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic diseases and translational medicine.
  10. Emsley, J., 2011. Nature's building blocks: an AZ guide to the elements. Oxford University Press.
  11. Verougstraete, V., Lison, D. and Hotz, P., 2003. Cadmium, lung and prostate cancer: a systematic review of recent epidemiological data. Journal of Toxicology and Environmental Health, Part B. 6(3): 227-256.
  12.  FDAU. 2011. United States Food and Drug Administration (2009). Regulations of bottled water. Accessed December.
  13. Fewtrell, L., Kaufman, R. and Prüss-Üstün, A., 2003. Lead: assessing the environmental burden of diseases at national and local levels. Geneva.
  14. Nwaka, S. and Hudson, A., 2006. Innovative lead discovery strategies for tropical diseases. Nature Reviews Drug Discovery. 5(11): 941-955.
  15. Katsuno, K., Burrows, J.N., Duncan, K., Van Huijsduijnen, R.H., Kaneko, T., Kita, K., Mowbray, C.E., Schmatz, D., Warner, P. and Slingsby, B.T., 2015. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nature Reviews drug discovery. 14(1): 751-758.
  16. Long, X.X., Yang, X.E. and Ni, W.Z., 2002. Current status and perspective on phytoremediation of heavy metal polluted soils. Journal of Applied Ecology. 13: 757-762.
  17. Mishra, S., Bhargava, R.N., More, N., Yadav, A., Zenith, S. and Mani, S., 2019. Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. In Environmental Biotechnology: For Sustainable Future; Sobota, R.C., Arora, N.K. and Kothari, R., Eds.; Springer: Singapore. 103-125.
  18. Zhao, X., Huang, J., Lu, J. and Sun, Y., 2019. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land-use types and depth layers in mine. Ecotoxicol. Environ. Saf. 170: 218-226.
  19. Bai, X.T., Wang, J., Dong, H., Chen, J.M. and Ge, Y., 2020. The relative importance of soil properties and heavy metals/metalloids to modulate microbial community and activity at a smelting site. J. Soils Sediment. 21: 1-12.
  20. Reavill, G., 2007. Aftermath, Inc: Cleaning Up After CSI Goes Home. Penguin.
  21. Girma, G., 2015. Microbial bioremediation of some heavy metals in soils: an updated review. Indian Journal of Scientific Research. 6(1):           
  22. Kulshreshtha, S., Mathur, N. and Bhatnagar, P., 2014. Mushroom as a product and their role in mycoremediation. AMB express. 4(1): 1-7.
  23. Kumar, V. and Dwivedi, S.K., 2021. Mycoremediation of heavy metals: Processes, mechanisms, and affecting factors. Environ. Sci. Pollut. Res. 28: 10375-10412.
  24. Das, N., Charumathi, D. and Vimala, R., 2007. Effect of pretreatment on Cd2+biosorption by mycelia biomass of Pleurotus Florida. Afr J Biotechnol. 6: 2555-2558.
  25. Veit, M.T., Tavares, C.R.G., Gomes-da-Costa, S.M. and Guedes, T.A., 2005. Adsorption isotherms of copper (II) for two species of dead fungi biomasses. Proc. Biochem. 40: 3303-3308.
  26. Jarosz-Wilkolazka, A.M., Graz, S., Braha, D., Menge D. and Krauss, G.J., 2006. Species-specific Cd-stress response in the white-rot basidiomycetes Abortiporus biennis and Cerrena unicolor. Biometals. 19: 39-49.
  27. Gonen, T.F., Yamac, M., Cabuk, A. and Yildiz, Z., 2008. Selection of newly isolated mushroom strains for tolerance and biosorption of zinc in vitro. J. Microbiol. Biotechnol. 18: 483-489.
  28. Bayramoglu, G., Celik, G., Yalcin, E., Yilmaz, M. and Arica, M.Y., 2005. Modification of surface properties of Lentinus Sajor-caju mycelia by physical and chemical methods: evaluation of their Cr6+ removal efficiencies from aqueous medium. Journal of Hazardous Materials. 119: 219-229.
  29. Kang, W.S., 2004. What is an oyster mushroom, Mushroom Growers‘ Handbook 1? Accessed on 08/06/2014 fromhttp://www.fungifun.org/mushworld/Oyster-Mushroom-Cultivation/mushroom-growers-handbook-1-mushworld-com-chapter-3.pdf.
  30. Chang, S.T., 2005. Witnessing the development of the mushroom industry in China. In: Tan, et (eds.) Proceedings of the Fifth International Conference on Mushroom Biology and Mushroom Products. Shanghai, China. 3-19.
  31. Jin, H.J., Khalid, A., Hussein A. and Sedky, H.A., 2011. Hassan Biosorptive capacity of Cd (II) and Pb (II) by lyophilized cells of Pleurotus eryngii Korean J. Soil Sci. Fert. 44(4): 615- 624.
  32. Negro, C., Tommasi, L. and Miceli, A., 2003. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresource Technology. 87(1): 41-44.
  33. Snyder, L.R., Classification of solvent properties of common liquids. J Chromatographic Sci. 16: 223-234.
  34. Bempah, C.K., Ewusi, A., Obiri-Yeboah, S., Asabere, S.B., Mensah, F., Boateng, J. and Voigt, H.J., 2013. distribution of arsenic and heavy metals from mine tailings dams at Obuasi municipality of Ghana. American Journal of Engineering Research. 2(5): 61-70.
  35. Bradford, M.M., 1976. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry. 254: 72-248.
  36. Gong, M., Li, Y., Dai, X. and Tian, M., 1997. Involvement of calcium and calmodulin in the acquisition of HS induced thermotolerance in maize seeding, Journal of Plant Physiology. 150: 615-621.
  37. Aebi, H., Methods of Enzymatic Analysis. New York: Academic Press.
  38. Swain, T. and Hillis, W.E., 1959. The Phenolic Constituents of Prunus domestica. I. The Quantitative Analysis of Phenolic Constituents. Journal of the Science of Food and Agriculture. 10: 63-68.
  39. McDonald, S., Prenzler, P.D., Antolovich, M., Robards, K. and Stadtman, E.R., 2001. Phenolic content and antioxidant activity of olive extracts. Food Chem. 73: 73-84.
  40. Pandjaitan, N., Howard, L.R., Morelock, T. and Gil, M.I., 2005. Antioxidant capacity and phenolic content of spinach as affected by genetics and maturation. J. Agric. Food Chem. 53(861): 8-23.
  41. Shui, G. and Leong, L.P., 2002. Separation and determination of organic acids and phenolic compounds in fruit juices and drinks by high-performance liquid chromatography J. Chromatogr A. 977: 89-96.
  42. Chang, C., Yang, M., Wen, H. and Chern, J., 2003. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis. 10(3): 178-182.
  43. Beketov, E.V., Pakhomov, V.P. and Nesterova, O.V., 2005. An improved method of flavonoid extraction from bird cherry fruits. Pharmaceutical Chemistry Journal. 39(6): 316-318.
  44. Sing, A. and Gauba, p., 2014. Mycoremediation: A treatment for heavy metal pollution of Soil. Journal of Civil Engineering and Environmental Technology. 1: 59-61.
  45. Zhang, T., Gao, X., Luo, X., Li, L., Ma, M., Zhu, Y. and Li, R., 2019. The effects of long-term exposure to low doses of cadmium on the health of the next generation of mice. Chemico-Biological Interactions. 1(1): 12-21.
  46. Azarm, l., Javadzadeh, N. and Jalilzadeh, R., 2020. Investigation of Chlorella vulgaris capacity in absorption of Nitrate and Phosphate from wastewater of fish farming pool in Khuzestan Province. Journal of Animal Environment. 12(2): 291-298. (In Persian)
  47. Seeger, R., 1982. Toxische Schwermetalle in Pilzen. Deutsche Apotheker Zeitung. 122: 1835-1844.
  48. Manzi, P., Aguzzi, A. and Pizzoferrato, L., 2001. Nutritional value of mushrooms widely consumed in Italy. Food Chem. 73: 321-
  49. Isildak, O., Turkekul, I., Elmastas, M. and Tuzen, M., 2004. Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey. Food Chem. 86(4): 547-52.
  50. Velásquez, L. and Dussan, J., 2009. Biosorption and bioaccumulation of heavy metals on dead and living biomass of Bacillus sphaericus. J Hazard Mater. 167(1-3): 713-716.
  51. Fawzy, E.M., Abdel-Motaal, F.F. and El-Zayat, S.A., 2017. Biosorption of heavy metals onto different eco-friendly substrates. Academic Journal. 9(5): 35-44.  
  52. Prakash, V., 2017. Mycoremediation of environmental pollutants. Int J Chem Tech Res. 10(3): 149-155.
  53. Dogan, H.H., Sanda, M.A., Uyanoz, R., Oztuk, C. and Cetin, U., 2006. Contents of metals in some wild mushrooms: its impact on human health. Biol. Trace Element Res. 110: 79-94.
  54. Ogbo, E.M. and Okhuoya, J.A., 2011. Bio-absorption of some heavy metals by Pleurotus tuber-regium Singer (an edible mushroom) from crude oil polluted soils amended with fertilizers and cellulosic wastes. Int J Soil Sci. 6: 34-44.
  55. Oyetayo, V.O., Adebayo, A.O. and Ibileye, A., 2012. Assessment of the biosorption potential of heavy metals by Pleurotus tuber-regium. Int J Adv Biol Res. 2: 293-297.
  56. Boaponsem, G.A., Obeng, A.K., Osei-Kwateng, M. and Badu, A.O., 2013. Accumulation of heavy metals by Pleurotus ostreatus from metal scrap sites. Int. J. Curr. Res. Rev. 5: 1-9.
  57. Nnorom, I.C., Jarzyńska, G., Falandysz, J., Drewnowska, M., Okoye, I. and Oji-Nnorom, C.G., 2012. Occurrence and accumulation of mercury in two species of wild-grown Pleurotus mushrooms from southeastern Nigeria. Ecotoxicol Environ Safe. 84: 78-83.
  58. Gabriel, J., Vosáhlo, J. and Baldrian, P., 1996.Biosorption of cadmium to mycelial pellets of wood‐rotting fungi. Biotechnol Tech. 10:345-348. 
  59. Adhikari, T., Tel-Or, E., Libal, Y. and Shenker, M., 2006. Effect of cadmium and iron on rice (Oryza sativa L.) plant in chelator-buffered nutrient solution. J. Plant Nutr. 29: 1919-1940.
  60. Naganuma, A., Miura, N., Kaneko, S., Mishina, T., Hosoya, S., Miyairi, S., Furuchi, T. and Kuge, S., 2000. GFAT as a target molecule of methylmercury toxicity in Saccharomyces cerevisiae. FASEB J. 14: 968-972.
  61. Sharma, S.K., Goloubinoff, P. and Christen, P., 2011. Non-Native Proteins as Newly Identified Targets of Heavy Metals and Metalloids. In Cellular Effects of Heavy Metals; Bánfalvi, G., Ed.; Springer: Heidelberg, Germany. 263-274.
  62. Jacobson, T., Navarrete, C., Sharma, S.K., Sideri, T.C., Ibstedt, S., Priya, S., Grant, C.M., Christen, P., Goloubinoff, P. and Tamás, M.J., 2012. Arsenite interferes with protein folding and triggers the formation of protein aggregates in yeast. J. Cell Sci. 125: 5073-5083.
  63. Akpaja, E.O., Nwogu, N.A. and Odibo, E.A., 2012. Effect of some heavy metals on the growth and development of Pleurotus tuber-regium. Mycosphere. 3: 57-60.
  64. Bali, R., Siegele, R. and Harrisa, A., 2010. Phytoextraction of Au: Uptake, accumulation and cellular distribution in Medicago sativa and Brassica juncea. Chemical Engineering Journal. 156: 286-297.
  65. Michalak, A., 2006. Phenolic compounds and their antioxidant activity in growing under heavy metal stress. Pol J Environ Stud. 15: 523-553.
  66. Guelfi, A., Azevedo, R.A., Lea, P.J. and Molina, S.M.G., 2003. Growth inhibition of the filamentous fungus Aspergillus nidulansby cadmium: an antioxidant enzyme approach. J Gen Appl Microbiol. 49: 63-73.
  67. Ulusua, Y., Öztürk, L. and Elmastaş, M., 2017. Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress. Russ J Plant Physiol. 64(6): 883-888.
  68. Devi, S.S., Sreenivasulu, Y. and Rao, K.V.B., 2017. Protective role of Trichoderma logibrachiatum (WT2) on Lead-induced oxidative stress in Helianthus annus Indian J Exp Biol. 55: 235-241.
  69. Wang, J., Li, T., Liu, G., Smith, J.M. and Zhao, Z., 2016. Unraveling the role of dark septate endophyte (DSE) colonizing maize (Zea mays) under cadmium stress: Physiological, cytological and genic aspect. scientific reports. 6: 22028.
  70. Verma, S. and Dubey, R.S., 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidants in growing rice plants. Plant Sci. 164: 1489-1498.
  71. Pizzino, G., Irrera, N. and Cucinotta, M., 2017.Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 8416-8763.
  72. Buvelot, H., Jaquet, V. and Krause, K.H., 2019.Mammalian NADPH oxidases. Methods Mol Biol. 1982: 17-36.
  73. Del-Río, L.A. and López-Huertas, E., 2016.ROS generation in peroxisomes and its role in cell signaling. Plant Cell Physiol. 5: 1364-1376.
  74. Martínez-Revelles, S., Avendaño, M.S. and García-Redondo, A.B., 2013.The reciprocal relationship between reactive oxygen species and cyclooxygenase-2 and vascular dysfunction in hypertension. Antioxidants Redox Signal. 18: 51-65.
  75. Lambert, A.J. and Brand, M.D., 2009.Reactive oxygen species production by mitochondria. Methods Mol Biol. 554: 165-181.
  76. Kapahi, M. and Sachdeva, S., Mycoremediation potential of Pleurotus species for heavy metals: a review Bioprocess. 4-32.
  77. Javaid, A. and Bajwa, R., 2007. Biosorption of Cr (III) ions from tannery wastewater by Pleurotus ostreatus. Mycopathologia. 5: 71-79.
  78. Puentes-Cárdenas, I.J., Pedroza-Rodríguez, A.M., Navarrete-López, M., Villegas-Garrido, T.L. and Cristiani-Urbina, E., 2012. Biosorption of trivalent chromium from aqueous solutions by Pleurotus ostreatus Environ Eng Manag J. 11(10): 1741-1752.
  79. Tay, C.C., Liew, H.H., Yong, S.K., Surif, S. and Abdul-Talib, S., 2009. Biosorption of lead (II) from aqueous solutions by Pleurotus as a toxicity biosorbent. In: Environmental science and technology conference (ESTEC2009), Kuala Terengganu Malaysia. Dec 7-8.
  80. Liew, H.H., Tay, C.C., Yong, S.K., Surif, S. and Abdul Talib, S., 2010. Biosorption characteristics of lead [Pb (II)] by Pleurotus ostreatus In: Abstracts of the proceedings of the international conference on science and social research (CSSR), Kuala Lumpur.
  81. Tay, C.C., Liew, H.H., Yin, C.Y., Abdul-Talib, S., Surif, S., Abdullah, A. and Yong, S.K., 2011. Biosorption of cadmium ions using Pleurotus ostreatus: growth kinetics, isotherm study, and biosorption mechanism. Kor J Chem Eng. 28(3): 825-830.
  82. Javaid, A., Bajwa, R., Shafique, U. and Anwar, J., 2011. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy. 35: 1675-1682.
  83. Piotr, Z., Katarzyna, K., Anna, W., Agnieszka, S., Edward, K., Agnieszka, S. and Bozena, M., 2020. Selenium and Zinc Biofortification of Pleurotus eryngii Mycelium and Fruiting Bodies as a Tool for Controlling Their Biological Activity. molecules. 25: 889.
  84. Prasad, A.S.A., Varatharaju, G., Anushri, C. and Dhivyasree, S., 2013. Biosorption of lead by Pleurotus florida and Trichoderma viride. Br Biotechnol J. 3(1): 66-78.
  85. Favero, N., Bressa, G. and Costa, P., 1990. Response of Pleurotus ostreatus to cadmium exposure. Ecotoxicol Environ Safe. 20(1): 1-6.
  86. Favero, N., Costa, P. and Paolo Rocco, G., 1990. Role of copper in cadmium metabolism in the basidiomycetes Pleurotus ostreatus. Comp Biochem Physiol Part C Comp Pharmacol. 97(2): 297-303.
  87. Mandal, T.K., Baldrian, P., Gabriel, J., Nerud, F. and Zadraz ̆il, F., 1998. Effect of mercury on the growth of wood-rotting basidiomycetes Pleurotus ostreatus, Pycnoporus cinnabarinus, and Serpula lacrymans. Chemosphere. 36(3): 435-440.
  88. Javaid, A. and Bajwa, R., 2008. Biosorption of electroplating heavy metals by some Mycopathologia. 6: 1-6.
  89. Arbanah, M., Miradatul Najwa, M.R. and Ku Halim, K.H., 2012. Biosorption of Cr(III), Fe(II), Cu(II), Zn(II) ions from liquid laboratory chemical waste by Pleurotus ostreatus. Int J Biotechnol Wellness Ind. 1: 152-162.
  90. Arbanah, M., Miradatul Najwa, M.R. and Ku Halim, K.H., 2013. Utilization of Pleurotus ostreatus in the removal of Cr(VI) from chemical laboratory waste. Int Refereed J Eng Sci. 2(4): 29-39.
  91. Dulay, R.M.R., De Castro, M.A.E.G., Coloma, N.B., Bernardo, A.P., Cruz, A.G.D., Tiniola, R.C., Kalaw, S.P. and Reyes, R.G., 2015. Effects and mycoremediation of lead (Pb) in five Pleurotus Int J Biol Pharm Allied Sci. 4(3): 1664-1677.
  92. Wu, M., Xu, Y., Ding, W., Li, Y. and Xu, H., 2016. Mycoremediation of manganese and phenanthrene by Pleurotus eryngii mycelium enhanced by tween 80 and saponin. Appl Microbiol Biotechnol. 100: 7249-7261.
  93. Lamrood, P.Y. and Ralegankar, S.D., 2013. Biosorption of Cu, Zn, Fe, Cd, Pb, and Ni by non-treated biomass of some edible mushrooms. Asian J Exp Biol. 4(2): 190-195.
  94. Xiangliang, P., Jianlong, W. and Daoyong, Z., 2005. Biosorption of Pb(II) by Pleurotus ostreatus immobilized in calcium alginate gel. Process Bio Chem. 40: 2799-2803.
  95. Xiangliang, P., Jianlong, W. and Daoyong, Z., 2009. Biosorption of Co(II) by immobilized Pleurotus ostreatus. Int J Environ Pollut. 37: 289-298.
  96. de Almeida, L.K. and Burgess, J.E., 2013. Biosorption and bioaccumulation of copper and lead by Phanerochaete and Pleurotus streatus.http://www.ewisa.co.za/literature/files/182-133%20Burgess.pdf. Accessed 20 June 2016.
  97. Yalçinkaya, Y., Arica, M.Y., Soysal, L. and Bektaş, S., 2002. Cadmium and mercury uptake by immobilized Pleurotus sapidus. Turk J Chem. 26(3): 441-452.
  98. Majeed, A., Jilani, M.I., Nadeem, R., Hanif, M.A. and Ansari, T.M., 2012. Novel studies for the development of hybrid biosorbent. Int J Chem Biochem Sci. 2: 78-82.
  99. Majeed, A., Jilani, M.I., Nadeem, R., Hanif, M.A. and Ansari, T.M., 2014. Adsorption of Pb(II) using novel Pleurotus Sajor-caju and sunflower hybrid biosorbent. Environ Prot Eng. 40(2): 5-15.
  100. Kooba, S. and Arısoy, M., 2011. The use of a white-rot fungus (Pleurotus ostreatus) immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination. Bioresour Technol. 102: 8035-8039.
  101. Özdemir, S., Okumuşa, V., Kılınçb, E., Bilgetekinc, H., Dündara, A. and Ziyadanogˇullarıb, B., 2012. Pleurotus eryngii immobilized Amberlite XAD-16 as a solid-phase biosorbent for preconcentrations of Cd2+and Co2+ and their determination by ICP-OES. Talanta. 99: 502-506.
  102. Tay, C.C., Redzwan, G., Liew, H.H., Yong, S.K., Surif, S. and Abdul-Talib, S., 2010. Copper (II) Biosorption characteristic of Pleurotus spent mushroom compost. In: International conference on science and social research (CSSR 2010), Kuala Lumpur, Malaysia. Dec 5-7.
  103. Carol, D., Kingsley, S.J. and Vincent, S., 2012. Hexavalent chromium removal from aqueous solutions by Pleurotus ostreatus spent biomass. Int J Eng Sci Technol. 4(1): 7-22.
  104. Tay, C.C., Redzwan, G., Liew, H.H., Yong, S.K., Surif, S. and Abdul-Talib, S., 2012. Fundamental behavior for biosorption of divalence cations by Pleurotus mushroom spent-substrate. Malays J Sci. 31: 40-44.
  105. Tay, C.C., Liew, H.H., Abdul-Talib, S. and Redzwan, G., 2016. Bi-metal biosorption using Pleurotus ostreatus spent mushroom substrate (PSMS) as a biosorbent: isotherm, kinetic, thermodynamic studies and mechanism. Desalination Water Treat. 57(20).
  106. Frutos, I., García-Delgado, C., Gárate A. and Eymar, E., 2016. Biosorption of heavy metals by organic carbon from spent mushroom substrates and their raw materials. Int J Environ Sci Technol. 13(11): 2713-2720.
  107. Bressa, G., Coma, L. and Costa, P., 1988. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus. Ecotoxicol Environ Safe. 16: 85-89.
  108. Danış, Ü., 2010. Biosorption of copper(II) from aqueous solutions by Pleurotus cornucopiae. BALWOIS 2010, Ohrid, Republic of Macedonia. 25-29.
  109. Xu, F., Liu, X., Chen, Y., Zhang, K. and Xu, H., 2016. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed. Sci Rep. 6: 26201.
  110. Vimala, R. and Das, N., 2011. Mechanism of Cd (II) adsorption by macrofungus Pleurotus platypus. J Environ Sci Vol. 23: 288-293.
  111. Adebayo, A.O., 2013. Investigation on Pleurotus ferulae potential for the sorption of Pb(II) from aqueous solution. Bull Chem Soc Ethiop. 27: 25-34.
  112. Jiang, Y., Hao, R. and Yang, S., 2016. Equilibrium and kinetic studies on biosorption of Pb (II) by common edible macrofungi: a comparative study. Can J Microbiol. 62(4): 329-337.
  113. Jiang, Y., Has, R. and Yang, S., 2017. Natural bioaccumulation of heavy metals onto common edible macrofungi and equilibrium and kinetic studies on biosorption of Pb (II) to them. Acta Nat Univ Pekin. 53(1): 125-134.
  114. Osman, M.S. and Bandyopadhyay, M., 1999. Bioseparation of lead ions from wastewater by using a fungus ostreatus. J Civil Eng. 27: 183-196.
  115. Huo, C.L., Shang, Y.Y., Zheng, J.J., He, R.X. and He, X.S., 2011. The adsorption effect of three mushroom powders on Cu2+ of low concentration. In: International symposium on water resource and environmental protection. May 20-22.
  116. Vimala, R. and Das, N., 2009. Biosorption of cadmium (II) and lead (II) from aqueous solutions using mushrooms: A comparative study. J. Hazard. Mater. 168: 376-382.
  117. Suseem, S.R. and Mary Saral, A., 2014. Biosorption of heavy metals using Pleurotuseous. J Chem Pharm Res. 6(7): 2163-2168.
  118. Joo, J.H., Hussein, K.A. and Hassan, S.H.A., 2011. Biosorption capacity of Cd (II) and Pb (II) by lyophilized cells of Pleurotus eryngii. Korean J Soil Sci Fert. 44: 615-624.
  119. Mishra, S., Srivastava, S., Tripathi, R.D., Kumar, R., Seth, C.S. and Gupta, D.K., 2006. Lead detoxification by coontail (Ceratophyllum demersum) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere. 65(6): 1027-1039.
  120. Frcal, N., Gurcr-Orthan, H. and Aykin- Burns, A., 2001. Toxic Metals and Oxidative Stress Part1: Mechanisms Involved in Metal Induced Oxidative Damage. Chem. 1(6): 529-539.
  121. Marquez-Garcia, B., Fernandez-Recamales, M.A. and Cordoba, F., 2012.Effects of cadmium on phenolic composition and antioxidant activities of Erica andevalensis. Aust J Bot. 936-950.
  122. Newell, A.M., Yousef, G.G., Lila, M.A., Ramirez-Mares, M.V. and de Mejia, E.G., 2010. Comparative in vitro bioactivities of tea extracts from six species of Ardisia and their effect on growth inhibition of HepG2 cells. J Ethnopharmacol. 130: 536-544.
  123. Côté, J., Caillet, S., Doyon, G., Sylvain, J.F. and Lacroix, M., 2010. Bioactive compounds and their biological properties.Crit Critical Reviews in Food Science and Nutrition. 50: 666-679.
  124. Prior, R.L., Wu, X. and Schaich, K., 2005. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem. 53: 4290-4302.
  125. Vaseem, H., Singh, V.K. and Singh, M.P., 2017. Heavy metal pollution due to coal washery effluent and its decontamination using a macro fungus, Pleurotus ostreatus, Ecotoxicol. Environ. Saf. 145: 42-49.