ترکیب شیمیایی و گوارش‏ پذیری آزمایشگاهی گیاه سسبانیا (Sesbania sesban) در هفته‏ های گوناگون رشد به روش تولید گاز در تغذیه نشخوارکنندگان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه جیرفت، جیرفت، ایران

3 گروه تولیدات گیاهی، دانشکده کشاورزی، مجتمع آموزش عالی شیروان، شیروان، ایران

4 گروه مهندسی بیوسیستم، دانشکده کشاورزی، دانشگاه شیراز، شیراز، ایران

5 گروه مهندسی کشاورزی ، آموزشکده فنی و کشاورزی فسا، دانشگاه فنی و حرفه ‏ای، فسا، ایران

10.22034/AEJ.2021.278108.2481

چکیده

گیاه سسبانیا از لگوم ‏های چندساله است که بیش ‏تر، در مناطق گرمسیری آسیا، آفریقا و استرالیا می ‏روید. این گیاه انواع خاک ‏ها را تحمل نموده و به ویژه سازگاری بالایی نسبت به خاک‏ های شور دارد. به دلیل پروتئین مناسب و فیبر نسبتا پایین آن، می ‏توان این گیاه را در جیره نشخوارکنندگان به‏ کار برد. این پژوهش با هدف اندازه‏ گیری ترکیبات شیمیایی و گوارش‏ پذیری آزمایشگاهی مواد مغذی گیاه سسبانیا (Sesbania sesban) به روش تولید گاز، و بررسی روند تغییرات این فراسنجه ‏ها ازهفته سوم تا نهم رشد در بخش ‏های گوناگون این گیاه انجام شد. پس از کشت گیاه در مزرعه پژوهشی، در هفته سوم، پنجم، هفتم و نهم کاشت، از گیاه کامل، برگ‏ ها و ساقه برای اندازه ‏گیری ترکیبات شیمیایی (ماده خشک، پروتئین، خاکستر، فیبر نامحلول در شوینده خنثی (NDF) و اسیدی (ADF)) و هم چنین، گوارش‏ پذیری آزمایشگاهی به روش تولید گاز، به طور جداگانه نمونه ‏هایی برداشته شد. یافته‌های این آزمایش نشان داد که درصد NDF و ADF با افزایش سن گیاه در گیاه کامل، برگ و ساقه به گونه معنی‌داری افزایش یافت به گونه ‏ای که در گیاه کامل مقدار NDF از 35/66 درصد درهفته سوم به 46/08 درصد درهفته نهم و مقدار ADF از 22/90 در هفته سوم به 35/43 در هفته نهم رسید. غلظت پروتئین با افزایش سن در همه بخش ‎های گیاه کاهش یافت و مقدار پروتئین خام در هفته نهم رشد به تربیب در گیاه کامل و برگ، 17/38 و 21/01 درصد بود. با افزایش سن گیاه، همگام با افزایش غلظت کربوهیدرات‏ های ساختاری و کاهش پروتئین در هر سه نمونه (گیاه کامل، برگ و ساقه)، تولید گاز تجمعی پس از 48 ساعت، کل گاز تولیدی، میزان انرژی قابل متابولیسم، اسیدهای چرب کوتاه زنجیره و گوارش‏ پذیری ماده آلی کاهش یافت. یافته ‏های این پژوهش نشان داد با توجه به مقدار ماده خشک تولیدی و دیگر ترکیبات اندازه‏ گیری شده، مناسب ‏ترین زمان برداشت این گیاه چندساله به عنوان گیاه کامل، هفته هفتم کشت بوده و گیاه کامل سسبانیا و یا برگ آن می‏ تواند پس از نزدیک دو ماه کشت منبع مناسبی برای تامین علوفه دام باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Chemical composition and in vitro digestibility of Sesbania sesban using gas production technique during various weeks of growth in ruminant nutrition

نویسندگان [English]

  • Seyed Mehdi Ghoreishi 1
  • Amir Mousaie 2
  • Akram Maleki 2
  • Nemat Ziaei 3
  • Mohammad Amin Nematollahi 4
  • Javad Taei Semiromi 5
1 Department of Animal Science, Faculty of Agriculture, Shiraz University, Shiraz, Iran
2 Department of Animal Science, Faculty of Agriculture, Jiroft University, Jiroft, Iran
3 Department of Plant Production, Faculty of Agriculture, Shirvan Higher Education Complex, Shirvan, Iran
4 Department of Biosystem Engineering, Faculty of Agriculture, Shiraz University, Shiraz, Iran
5 Department of Agricultural Engineering, Fasa Technical and Agricultural College, Technical and Vocational University, Fasa, Iran
چکیده [English]

Sesbania is a perennial legume that grows mostly in the tropics of Asia, Africa and Australia. This plant tolerates different type of soils, especially saline soils. Due to appropriate protein percentage and relatively low fiber, this plant can be used in ruminant diets. This study was conducted to determine the chemical composition and digestibility of sesbania (Sesbania sesban) using gas production technique and to evaluate the trend of changes in these parameters from the third week to ninth week of growth. The samples from whole plant, leaves and stems were collected separately at third, fifth, seventh and ninth week of planting, to measure chemical composition (dry matter, protein, ash, neutral detergent fiber and acid detergent fiber) and also in vitro digestibility by gas production technique. The results of this experiment showed that the percentage of NDF and ADF increased significantly with the growth in the whole plant, leaves and stems, so that in the whole plant the amount of NDF increased from 35.66% in the third week to 46.08% in ninth week, and ADF ranged from 22.90 in the third week to 35.43 in the ninth week. Protein concentration decreased with aging in all parts of the plant. The amount of protein in the ninth week of growth was approximately 17.38% and 21.01% in the whole plant and leaves, respectively. With increasing plant age, along with increasing the concentration of structural carbohydrates and protein reduction in all three samples (whole plant, leaves and stems), the production of cumulative gas after 48 hours, total gas production, metabolisable energy, short chain fatty acids and organic matter digestibility decreased. The results of this study showed that according to the amount of dry matter and other measured compounds, the most appropriate time to harvest this plant as a whole plant is the seventh week of cultivation and the whole sesbania or its leaves can be a good source of livestock fodder after about two months of cultivation.

کلیدواژه‌ها [English]

  • Chemical composition
  • Gas production technique
  • In vitro digestibility
  • Sesbania sesban
  • Weeks of growth
  1. Nigussie, Z. and Alemayehu, G., 2013. Sesbania sesban (L.) Merrill: Potential uses of an underutilized multipurpose tree in Ethiopia. African Journal of Plant Science. 7: 468-475.
  2. Taei, M., Roozkhosh, M. and Jokar, M., 2014. Investigating different methods of breaking dormancy of Sesbania (Sesbania Sesban) seeds. The first national conference on agriculture, environment and food security, Jiroft. (In Persian)
  3. Goswami, S., Mishra, K., Singh, R.P., Singh, P. and Singh, P., 2016. Sesbania sesban a plant with diverse therapeutic benefits: an overview. SGVU Journal of Pharmaceutical Research & Education. 1: 111-121.
  4. Oosting,J., Mekoya, A., Fernandez-Rivera, S. and Van der Zijpp, A., 2011. Sesbania sesban as a fodder tree in Ethiopian livestock farming systems: Feeding practices and farmers' perception of feeding effects on sheep performance. Livestock Science. 139: 135-141.
  5. Kaitho, , Umunna, N., Nsahlai, I., Tamminga, S. and Van Bruchem, J., 1998. Utilization of browse supplements with varying tannin levels by Ethiopian Menz sheep: 1. Intake, digestibility and live weight changes. Agroforestry systems. 39: 145-159.
  6. Tessema, Z. and Baars, R., 2004. Chemical composition, in vitro dry matter digestibility and ruminal degradation of Napier grass (Pennisetum purpureum (L.) Schumach.) mixed with different levels of Sesbania sesban (L.) Merr. Animal Feed Science and Technology. 117: 29-41.
  7. Manaye, T., Tolera, A. and Zewdu, T., 2009. Feed intake, digestibility and body weight gain of sheep fed Napier grass mixed with different levels of Sesbania sesban. Livestock Science. 122: 24-29.
  8. Nsahlai, I., Siaw, D. and Osuji, P., 1994. The relationships between gas production and chemical composition of 23 browses of the genus Sesbania. Journal of the Science of Food and Agriculture. 65: 13-20.
  9. Bonsi, M., Osuji, P. and Tuah, A., 1995. Effect of supplementing teff straw with different levels of leucaena or sesbania leaves on the degradabilities of teff straw, sesbania, leucaena, tagasaste and vernonia and on certain rumen and blood metabolites in Ethiopian Menz sheep. Animal Feed Science and Technology. 52: 101-129.
  10. El hassan, S.M., Lahlou Kassi, A., Newbold, C.J. and Wallace, R.J., 2000. Chemical composition and degradation characteristics of foliage of some African multipurpose trees. Animal Feed Science and Technology. 86: 27-37.
  11. Mazloom, N., Khorassani, R., Fotovat, A. and Hasheminezhad, Y., 2014. Phytoremediation of Saline-Sodic Soils by Sesbania acuelata, Rubia tinctorum and Cynodon dactylon Compared to Chemical Methods. Journal of Water and Soil Science. 17(66): 97-106. (In Persian)
  12.  AOAC. 2005. Official Methods of Analysis of AOAC international. AOAC international. Washington DC. USA.
  13. Van Soest, P.V., Robertson, J. and Lewis, B., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science. 74: 3583-3597.
  14. Menke,H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal research and development. 28: 7-55.
  15. Fedorah, P.M. and Hrudey, S.E., 1983. A simple apparatus for measuring gas production by methanogenic cultures in serum bottles. Environmental Technology. 4: 425-432.
  16. Getachew, G., Makka, H. and Becker, K., 2002. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Science. 139: 341-352.
  17.  SAS. 2003. Statistical Analysis Systems Institute. Version 9.2 SAS Institute Inc., Cary, NC.
  18. Ørskov,R. and McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to the rate of passage. Journal of Agricultural Science. 92: 449-503.
  19. Schofield, P., Pitt, R.E. and Pell, A.N., 1994. Kinetics of fiber digestion from in vitro gas production. Journal of Animal Science. 72: 2980-2991.
  20. Wang, M., Tang, S. and Tan, Z., 2011. Modeling in vitro gas production kinetics: Derivation of Logistic–Exponential (LE) equations and comparison of models. Animal Feed Science and Technology. 165: 137-150.
  21. Debela, E., Tolera, A., Eik. L.O. and Salte, R., 2011. Nutritive value of morphological fractions of Sesbania sesban and Desmodium intortum. Tropical and Subtropical Agroecosystems. 14: 793-805.
  22. Tolera,, Khazaal, K. and Ørskov, E.R., 1997. Nutritive evaluations of some forage species. Animal Feed Science and Technology. 67: 181-195.
  23. Mupangwa,F., Ngongoni, N.T. and Hamudikuwanda, H., 2006. The effect of stage of growth and method of drying fresh herbage on chemical composition of three tropical herbaceous forage legumes. Tropical and Subtropical Agroecosystem. 6: 23-30.
  24. Peiretti, P.G. and Gai, F., 2006. Chemical composition, nutritive value, fatty acid and amino acid contents of Galega officinalis during its growth stage and in regrowth. Animal Feed Science and Technology. 130: 257-267.
  25. Ammar, H., López, S., González, J.S. and Ranilla M.J., 2004. Chemical composition and in vitro digestibility of some Spanish browse plant species. Journal of the Science of Food and Agriculture. 84: 197-204.
  26. Becho, M.B., 2016. Nutritional Evaluation of Major Browse Species from Afar and Borana Rangelands and Supplementary Values of Acacia tortilis leaves to Arsi-Bale Goats. Ph.D. Dissertation Hawassa University, Ethiopia.
  27. Edwards, A., Mlambo, V., Lallo, C.H.O., Garcia, G.W. and Diptee, M.D., 2012. In vitro ruminal fermentation of leaves from three tree forages in response to incremental levels of polyethylene glycol. Open Journal of Animal Sciences. 2: 142.
  28. McDonald, P.R.A., Edwards, R.A., Greenhalgh, J.F.D. and Morgan, C.A., 2002. Animal Nutrition (6th edition). Pearson Educational Limited. Edinburgh. Great Britain.
  29. Beuvink, J.M., 1993. Measuring and modelling in-vitro gas production kinetics to evaluate ruminal fermentation of feedstuffs. Ph.D. Dissertation Wageningen University, Netherland.
  30. Beuvink, J. and Kogut, J., 1993. Modeling gas production kinetics of grass silages incubated with buffered ruminal fluid. Journal of Animal Science. 71: 1041-1046.
  31. Getachew, G., Blümmel, M., Makkar, H. and Becker, K., 1998. In vitro gas measuring techniques for assessment of nutritional quality of feeds: a review. Animal Feed Science and Technology. 72: 261-281.
  32. Lavrenčič, A., Stefanon, B. and Susmel, P., 1997. An evaluation of the Gompertz model in degradability studies of forage chemical components. Animal Science. 64: 423-431.
  33. Deaville, E.R. and Givens, D.I., 2001. Use of the automated gas production technique to determine the fermentation kinetics of carbohydrate fractions in maize silage. Animal Feed Science and Technology. 93: 205-215.
  34. Naraghi Rad, Z., Ghoreishi, S.M. and Kargar, Sh., 2021. Chemical Composition and in Vitro Digestibility of Pomegranate Byproducts in Ruminant diet. Journal of Animal Environment. 13(2): 67-74. (In Persian)
  35. Bahrampour, J. and Mousaei, A., 2020. The determination of nutrients composition, ferment ability and gas production parameters of Lawsonia inermis leaves for animal nutrition. Journal of Animal Environment. 12(4): 79-84.
  36. Mountousis, I., Papanikolaou, K., Stanogias, G., Chatzitheodoridis, F. and Roukos, C., 2008. Seasonal variation of chemical composition and dry matter digestibility of rangelands in NW Greece. Journal of Central European Agriculture. 9: 547-555.
  37. Sisayy, A., Negesse, T. and Nurfeta, A., 2018. Short chain fatty acid production, organic matter digestibility and metabolisable energy content of indigenous browses from Ethiopian Rift Valley. IOSR Journal of Agriculture and Veterinary Science. 11: 61-68.
  38. Kamalak, A., Canbolat, O., Erol, A., Kilinc, C., Kizilsimsek, M., Ozkan, C.O. and Ozkose, E., 2005.Effect of variety on chemical composition, in vitro gas production, metobolizable energy and organic matter digestibility of alfalfa hays. Livestock Research for Rural Development. 17, Article #77. Retrieved April 17, 2021, from http://www.lrrd.org/lrrd17/7/kama17077.htm
  39. Farivar, F., Torbatinejad, N., Jafari Ahangari, Y., Hasani, S., Gharebash, A. and Mohajer, M., 2014. In vitro evaluation of alfalfa substitution with fenugreek (Trigonella foenum graegum) hay in a high concentrate ration. Iranian Journal of Applied Animal Science. 4: 291-296.