اثر لارو سوسک گوشت خوار (Tenebrio molitor) غنی شده با پروبیوتیک تجاری پروتکسین بر عملکرد رشد و رنگ پوست ماهی اسکار (Astronotus ocellatus)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیلات، واحد علوم تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه شیلات، واحد آبادان، دانشگاه آزاد اسلامی، آبادان، ایران

10.22034/AEJ.2022.326895.2747

چکیده

استفاده از غذاهای زنده به عنوان منابع غذایی مغذی که می‌توانند حاوی رنگدانه‌های طبیعی نیز باشند؛ برای تقویت رنگدانه پوست، بهبود عملکرد رشد و افزایش سلامت عمومی ماهیان زینتی همواره توصیه می‌شود. این مطالعه به منظور بررسی تأثیر سطوح مختلف لارو سوسک گوشت خوار غنی شده با پروبیوتیک تجاری پروتکسین بر شاخص ­های رشد، نرخ بازماندگی و رنگ پوست ماهی اسکار انجام شد. ابتدا لارو سوسک گوشت خوار با سطوح 0 (شاهد)، 0/5، 1، 1/5 و 2 درصد مکمل میکروبی پروتکسین همراه با پودر سبوس گندم به عنوان غذای اصلی به مدت 14 روز غذادهی شدند. سپس ماهیان اسکار با میانگین وزنی 0/2±3/0 گرم و طول اولیه 0/3±2/2 سانتی متر در 15 آکواریوم شیشه ­ای با تراکم 20 عدد ماهی به صورت تصادفی معرفی شدند و طی مدت 56 روز به صورت مستقیم از لارو سوسک گوشت خوار غنی شده با سطوح مختلف پروبیوتیک تجاری پروتکسین تغذیه شدند. بر اساس نتایج، حداکثر میزان وزن کسب شده (0/23±10/5 گرم)، افزایش وزن بدن (0/31±7/54 گرم)، نرخ رشد روزانه (0/34±4/56 درصد)، نرخ رشد ویژه (0/10±2/11 درصد/روز) و رشد طولی (0/5±3/5 سانتی متر) در تیمار 2 درصد لارو سوسک غنی شده با پروبیوتیک پروتسین نسبت به سایر تیمارها مشاهده شد (0/05>P). بیش ترین ضریب تبدیل غذایی مربوط به تیمار شاهد (0/17±1/25) و کم ترین آن مربوط به تیمار 2 درصد (0/05±0/84) بود. هر چند که اختلاف معنی داری در درصد بازماندگی بین تیمارهای دریافت کننده لارو سوسک گوشت خوار غنی شده با پروبیوتیک تجاری پروتکسین وجود نداشت (0/05<P). در خصوص رنگ پذیری پوست ماهی در تیمار 2 درصد کاهش و افزایش معنی داری به ترتیب در خصوص مولفه­ روشنایی (L*) و قرمزی (a *) نسبت به سایر تیمارها به ویژه تیمار شاهد مشاهده شد (0/05>P). در مجموع، تأثیر سطوح مختلف لارو سوسک گوشت خوار غنی شده با پروبیوتیک تجاری پروتکسین به ویژه در سطح 2 درصد خوراک روی شاخص‌های رشد و رنگ پوست ماهی اسکار کاملاً مثبت و معنی دار ارزیابی شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of mealworm (Tenebrio molitor) larvae enriched with a commercial probiotic, Protexin, on growth performance and skin color in Oscar (Astronotus ocellatus)

نویسندگان [English]

  • Emdad Dadvar 1
  • Seyed Pezhman Hosseini Shekarabi 1
  • Elham Khazaie 1
  • Jafar Ehsani 2
  • Mehdi Shamsaie Mehrgan 1
1 Department of Fisheries Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Fisheries, Abadan Branch, Islamic Azad University, Abadan, Iran
چکیده [English]

Using live feed as nutritious feed sources that can also contain natural pigments; is always recommended to strengthen skin pigment, improve growth performance and increase the general health of ornamental fish. This study was conducted to evaluate the effect of different levels of mealworms (Tenebrio molitor) larvae enriched with commercial probiotic, Protexin on some growth factors, survival rate, and skin color of Oscar (Astronotus ocellatus). First, the mealworms larvae were fed with 0 (control), 0.5, 1, 1.5 and 2% of a commercial Protexin probiotic along with wheat bran powder as the main feed resource for 14 days. Then, Oscar fish with an average weight of 3.0 ± 0.2 g and an initial length of 2.2 3 0.3 cm were randomly distributed into 15 glass aquariums with a density of 20 fish and were fed for 56 days with the enriched mealworms larvae with Protexin. Based on the results, weight gain (10.5 ± 0.23 g), body weight gain (7.54 ±0.31 g), daily growth rate (4.56 ± 0.34), specific growth rate (2.11 ±0.1), and longitudinal growth (3.5 ± 0.5 cm) in 2% treatment showed a significant difference compared to the control group and other treatments (P<0.05). The highest feed conversion ratio was obtained in control (1.25 ±0.17) and the lowest value was observed in 2% treatment (0.84 ±05). However, there was no significant difference in survival percentage between treatments receiving diets containing larvae enriched with probiotic, Protexin. The fish skin color according to L * and a * indices in the 2% treatment had a significant decrease compared to other treatments, especially the control treatment (P<0.05). The effect of different levels of mealworms larvae enriched with commercial probiotic, especially at the level of 2% feed on the growth indices and skin color of Oscar fish was evaluated as completely positive and significant.

کلیدواژه‌ها [English]

  • Mealworms (Tenebrio molitor) larvae
  • Protexin probiotic
  • Oscar (Astronotus ocellatus)
  • Growth performance
  • Skin color
  1. DiLauro, M.N., Krise, W.F and, Fynn-Aikins, K., 1998. Growth and survival of lake sturgeon larvae fed formulated diets. The Progressive fish-culturist. 60(4): 293-296.
  2. Shafique, L., Abdel-Latif, H.M., Hassan, F.U., Alagawany, M., Naiel, M.A., Dawood, M.A. and Liu, Q., 2020. The feasibility of using yellow mealworms (Tenebrio molitor): Towards a sustainable aquafeed industry. Animals. 11(3): 811.
  3. Cristofoletti, P.T., Ribeiro, A.F. and Terra, W.R., 2005. The cathepsin L-like proteinases from the midgut of Tenebrio molitor larvae: sequence, properties, immunocytochemical localization and function. Insect Biochemistry and Molecular Biology. 35(8): 883-901.
  4. Gasco, L., Henry, M., Piccolo, G., Marono, S, Gai, F., Renna, M., Lussiana, C., Antonopoulou, E., Mola, P. and Chatzifotis, S., 2016. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax) juveniles: growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science and Technology. 220: 34-45.
  5. Merrifield, D.L. and Carnevali, O., 2014. Probiotic modulation of the gut microbiota of fish. Aquaculture nutrition: Gut health, probiotics and prebiotics. 20: 185-222.
  6. Ringø, E., 2020. Probiotics in shellfish aquaculture. Aquaculture and Fisheries. 5(1): 1-27.
  7. Lahtinen, S.J., Jalonen, L. and Ouwehand, A.C., 2007. Specific Bifidobacterium strains isolated from elderly subjects inhibit growth of Staphylococcus aureus. Int J Food Microbiol. 117: 125-128. doi:10.1016/j.ijfoodmicro.2007.02.023
  8. Nayak, S.K., 2010. Probiotics and immunity: A fish perspective. Fish & Shellfish Immunolog 29(1): 2-14.
  9. Elsabagh, M., Mohamed, R., Moustafa, E.M., Hamza, A., Farrag, F., Decamp, O. and Eltholth, M., 2018. Assessing the impact of Bacillus strains mixture probiotic on water quality, growth performance, blood profile and intestinal morphology of Nile tilapia, Oreochromis niloticus. Aquaculture Nutrition. 24(6): 1613-1622.
  10. Naraghi, M., Shamsaie Mehrgan, M. and Manouchehri, H., 2022. Dietary incorporation of Bacillus subtilis and Bacillus licheniformis mixture (DiPro Aqua) Ameliorates growth performance, immune response, and intestinal morphology in rainbow trout. North American Journal of Aquaculture. 84(1): 116-125.
  11. Firouzbakhsh, F., Noori, F., Khalesi, M.K. and Jani-Khalili, K., 2011. Effects of a probiotic, protexin, on the growth performance and hematological parameters in the Oscar (Astronotus ocellatus) fingerlings. Fish Physiology and Biochemistry. 37(4): 833-842.
  12. Zare, R., Kenari, A.A. and Sadati, M.Y., 2021. Influence of dietary acetic acid, protexin (probiotic), and their combination on growth performance, intestinal microbiota, digestive enzymes, immunological parameters, and fatty acids composition in Siberian sturgeon (Acipenser baerii, Brandt, 1869). Aquaculture International. 29(3): 891-910.
  13.  AOAC. 1995. Official Methods of Analysis, Association of Official Analytical Chemists International. 4nd edition. Arlington, VA, USA. 634 p.
  14. Yam, K.L. and Papadakis, S.E., 2004. A simple digital imaging method for measuring and analyzing color of food surfaces. Journal of food engineering. 61(1): 137-142.
  15. Wu, D. and Sun, D.W., Colour measurements by computer vision for food quality control–A review. Trends in Food Science & Technology. 29(1): 5-20.
  16. Erdogan, F., Erdogan, M. and Gümüş, E., 2012. Effects of dietary protein and lipid levels on growth performances of two African cichlids (Pseudotropheus socolofi and Haplochromis ahli). Turkish Journal of Fisheries and Aquatic Sciences. 12(3).
  17. Darras, A.I., 2020. Implementation of sustainable practices to ornamental plant cultivation worldwide: A critical review. Agronomy. 10(10): 1570.
  18. Henry, M., Gasco, L., Piccolo, G. and Fountoulaki, E., 2015. Review on the use of insects in the diet of farmed fish: past and future. Animal Feed Science and Technology. 203: 1-22.
  19. Cheraghalizade, L., Shamsaei, M., Yazdani Sadati, M.A., Kamali, A.Gh., Abdollah Tabar, S.Y. and Cheraghalizade, T., 2014. Effect of Tenebrio molitor larva as a supplementary diet on some growth performances and survival indices in Acipenser nudiventris juveniles. Journal of Fisheries. 8(1): 37-49. (In Persian)
  20. Newton, L.A., Sheppard, C.R., Watson, D.W., Burtle, G.A. and Dove, R.O., 2005. Using the black soldier fly, Hermetia illucens, as a value-added tool for the management of swine manure. Animal and Poultry Waste Management Center, North Carolina State University, Raleigh, NC. 17-18.
  21. StHilaire, S., Sheppard, C., Tomberlin, J.K., Irving, S., Newton, L., McGuire, M.A., Mosley, E.E., Hardy, W. and Sealey, W., 2007. Fly prepupae as a feedstuff for rainbow trout, Oncorhynchus mykiss. Journal of the world aquaculture society. 38(1): 59-67.
  22. Ng, W.K., Liew, F.L., Ang, L.P. and Wong, K.W., 2001. Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquaculture Research. 32: 273-280.
  23. Veldkamp, T., Van Duinkerken, G., van Huis, A., Lakemond, C.M., Ottevanger, E., Bosch, G. and Van Boekel, T., 2012. Insects as a sustainable feed ingredient in pig and poultry diets: a feasibility study= Insecten als duurzame diervoedergrondstof in varkens-en pluimveevoeders: een haalbaarheidsstudie. Wageningen UR Livestock Research.
  24. de Lima, J.S., Pittaluga, M.L., de Menezes Lovatto, N., Veiverberg, C.A., Borille, R. and Lazzari, R., 2021. Mealworm (Tenebrio molitor) potencial in fish nutrition: a review. Research, Society and Development. 10(16): e269101623229.
  25. Ahmed, H.A. and Sadek, K.M., 2015. Impact of dietary supplementation of sodium butyrate and/or protexin on the growth performance, some blood parameters, and immune response of Oreochromis niloticus. International Journal of Agriculture Innovations and Research. 3(4): 985-991.
  26. Irianto, A. and Austin, B., 2002. Probiotics in aquaculture. Journal of fish diseases. 25(11): 633-642.
  27. Goswami, C. and Zade, V.S., 2015. Effect of Daucus carota and Beta vulgaris on Color of Anabus testudineus. Fisheries and Aquaculture Journal. 6(3): 1.
  28. Diler, İ. and Dilek, K., 2002. Significance of pigmentation and use in aquaculture. Turkish Journal of Fisheries and Aquatic Sciences. 2(1).
  29. Lee, C.R., Pham, M.A. and Lee, S.M., 2010. Effects of dietary paprika and lipid levels on growth and skin pigmentation of pale chub (Zacco platypus). Asian-Australasian Journal of Animal Sciences. 23(6):724-232.
  30. Jeong, S.M., Khosravi, S., Yoon, K.Y., Kim, K.W., Lee, B.J., Hur, S.W. and Lee, S.M., 2021. Mealworm, Tenebrio molitor, as a feed ingredient for juvenile olive flounder, Paralichthys olivaceus. Aquaculture Reports. 20: 100747.
  31. Iaconisi, V., Marono, S., Parisi, G., Gasco, L., Genovese, L., Maricchiolo, G., Bovera, F. and Piccolo, G., 2017. Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture. 476: 49-58.
  32. Torrissen, O.J. and Naevdal, G., 1988. Pigmentation of salmonids—variation in flesh carotenoids of Atlantic salmon. Aquaculture. 68(4): 305-310.