تعیین ترکیب شیمیایی، تخمیرپذیری، گوارش پذیری، انرژی و پروتئین قابل متابولیسم پسماندهای حاصل از ذرت فرآوری شده در تغذیه نشخوارکنندگان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 موسسه تحقیقات علوم دامی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

2 گروه علوم دامی، دانشکده کشاورزی، دانشگاه پیام نور، تهران، ایران

10.22034/AEJ.2022.342874.2808

چکیده

ذرت مهم ترین جزء خوراک متراکم در دام­ ها می­ باشد که بر اثر تغییرات اقلیمی و کاهش بارش ­های جوی، قیمت آن همیشه افزایشی بوده و لذا کاربرد پسماندهای ذرت در تغذیه دام، مقرون به ­صرفه بوده و ضروری به ­نظر می ­رسد. پس از فرآوری دانه ذرت و استخراج نشاسته آن، محصولات فرعی شامل فیبر ذرت (پوسته خارجی)، جرم­ ذرت (جنین و جوانه) و محلول ضایعاتی گلوتن ذرت تولید می­ شود که این پسماندها منابع غنی برای تغذیه دام ­ها می­ باشند. هدف این پژوهش تعیین ترکیب شیمیایی، تخمیرپذیری، گوارش پذیری، پروتئین و انرژی قابل متابولیسم فیبرذرت و خوراک­ گلوتن (مخلوط فیبر و گلوتن­ ضایعاتی) در تغذیه نشخوارکنندگان، می­ باشد. پسماندهای ­ذرت فرآوری شده شامل فیبرذرت، جرم ­ذرت، خوراک­ گلوتن (مخلوط فیبر و گلوتن مایع­ ضایعاتی) از شرکت تجاری تهیه شدند. سپس نمونه ­های آزمایشی در آزمایشگاه موسسه تحقیقات علوم دامی ­کشور، آسیاب شده و ترکیب­ شیمیایی، تخمیرپذیری و گوارش ­پذیری این پسماندها اندازه ­گیری شدند. تولیدگاز با استفاده از مخلوط شیرابه شکمبه سه راس گاو نر تالشی فیستولا­گذاری شده، برای زمان ­های مختلف تخمیر شامل 72،48،24،12،8،6،4،2 و 96 ساعت انکوباسیون شکمبه ­ای، انجام شد. سپس پروتئین و انرژی قابل متابولیسم و نیز خوراک مصرفی روزانه پسماندهای ذرت به دست آمدند. ماده ­آلی، پروتئین­ خام، چربی­ خام، خاکستر خام، الیاف نامحلول در شوینده خنثی، کربوهیدرات­ های غیرفیبری و نشاسته در فیبر ذرت به­ ترتیب 89/3، 14/0، 3/3، 10/7، 70/2، 1/7 و 3/5 درصد، در جرم ­ذرت به ­ترتیب 98/4، 9/1، 52/1، 1/6، 27/3، 9/9 و 10/7 درصد و نیز در خوراک­ گلوتن­ ذرت به ­ترتیب 94/9، 20/6، 3/5، 5/1، 53/1، 17/6 و 8/5 درصد بودند. تولیدگاز )طی 24 ساعت تخمیر شکمبه ­ای( فیبر ذرت و خوراک گلوتن­ ذرت به ­ترتیب 37/7 و 61/5 (میلی ­لیتر در 200 میلی­ گرم) و نیز انرژی قابل متابولیسم آن ها ­به­ ترتیب 6/2 و 11/6 (مگاژول بر کیلوگرم) شدند. قابلیت ­هضم ­ماده­  آلی فیبر ذرت و خوراک­ گلوتن ­ذرت به ­ترتیب 67/1 و 80/2 (درصد) شد. پروتئین قابل متابولیسم فیبر ذرت و خوراک­ گلوتن­ ذرت به­  ترتیب 13/0 و 15/5 (گرم در کیلوگرم) شد. هم چنین خوراک مصرفی روزانه (خوراک­ گلوتن­ ذرت) برای گاو، گوسفند و بز به­ ترتیب 4226/3، 1102/4 و 932/5 (گرم در روز وزن متابولیکی) به دست آمد. با توجه به ­مناسب بودن ترکیب­ شیمیایی، تخمیرپذیری و گوارش ­پذیری خوراک­ گلوتن ذرت به­ نظر می­ رسد این پسماندها برای تغذیه دام ­ها مفید می ­باشد. خوراک­ گلوتن ­ذرت را می توان به عنوان جایگزین بخش فیبری جیره نشخوارکنندگان استفاده نمود. در مجموع کاربرد پسماندهای حاصل از ذرت فرآوری ­شده می­ تواند منجر به کاهش هزینه تولید خوراک در نشخوارکنندگان شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determine of chemical composition, fermentability, digestibility, ME and MP of corn processing by-products on ruminants nutrition

نویسندگان [English]

  • Amirreza Safaei 1
  • Taimour Tanha 2
  • Alireza Aghashahi 1
  • Ali Shadmaman 2
  • Mansoureh Ameli 1
1 Animal Science Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran
2 Department of Animal science, Faculty of Agriculture, Payame Nnoor University, Tehran, Iran
چکیده [English]

Corn is the most important component of concentrate feeds in livestock which due to climate change and reduced rainfall, its price is always increasing and therefore the use of affordable corn waste, it seems necessary. After corn processing and starch extraction, by-products including corn germ, fiber and gluten are produced which are rich sources for ruminant nutrition. The aim of this study was to determine the chemical composition, fermentability, digestibility, ME and MP for corn fiber and corn gluten feed. Samples of Corn processing residues including germ, fiber and corn gluten feed were obtained from a company and the samples were transferred to the laboratory of Animal Science Research Institute of Iran and they were milled. Then the chemical composition, gas production and digestibility were measured. Gas production was measured using a mixture of rumen liquor from three fistulated  bulls (Taleshi cow) for different fermentation times, including 2,4,6,8,12,16,24,48, 72 and 96 hours of ruminal incubation. Also, ME, MP and DMI of Corn processing residues were obtained. Amount of Organic Matter, Crude Protein, Crude Fat, NDF, ADF, NFC and starch in corn fiber were obtained 89.3, 14.0, 3.3, 10.7, 70.2, 14.7 and 3.5% respectively; in corn germ were obtained 98.4, 9.4, 52.1, 1.6, 27.3, 9.9 and 10.7% (in order) and in corn gluten feed were obtained 94.9, 20.6, 3.5, 5.1, 53.1, 17.6 and 8.5 %, respectively. The gas production (at 24 hours of fermentation) of corn fiber and corn gluten feed were measured 37.7 and 61.5 (ml/200mg), respectively. The ME content of corn fiber and corn gluten feed were calculated 6.2 and 11.6 (MJ/Kg), respectively. OMD of corn fiber and corn gluten feed were measured 67.1 and 80.2%, respectively. The MP content of corn fiber and corn gluten feed (at maintenance level) were calculated 13 and 15.5 (g/Kg) in order. Dry matter intake (DMI) of corn gluten feed on cow, sheep and goat (at maintenance level) were obtained 4226.3, 1102.4 and 932.5 (g/KgW0.75) respectively. Due to the suitability of fermentability and digestibility of gluten corn feed, it seems this wastes is useful for feeding livestock. Corn gluten feed can be used as a substitute for the fibrous part of the ruminant diet. In general, the use of processed corn waste can reduce the cost of feed production in ruminants.

کلیدواژه‌ها [English]

  • Processed corn wastes
  • Gas production
  • Digestibility
  • Ruminants
  1. National Academies of Sciences, Engineering, and Medicine. 2021. Nutrient Requirements of Dairy Cattle: Eighth Revised Edition. Washington, DC: The National Academies Press. https://doi.org/10.17226/25806.

    1. Rausch, K.D. and Belyea, R.L., 2006. The future of coproducts from corn processing. Appl. Biochem. Biotechnol. 128: 47-86.
    2. Agricultural statistics. 2021. Agricultural statistics. Vol. 1 of crops for the crop year 2018-2019. Publications of the Information and Communication Technology Center of the Ministry of Jihad Agriculture. (In Persian)
    3. Yu, P., 2007. Protein molecular structures, protein subfractions, and protein availability affected by heat processing: A review. American. Journal of Biochemidtry and Biotechnology. 3: 70-90.
    4. Gunderson, S.L., Aguilar, A.A., Johnson, D.E. and Olson, J.D., 1988. Nutritional Value of Wet Corn Gluten Feed for Sheep and Lactating Dairy Cows. Journal of Dairy Science. 71(5): 1204-1210.
    5. Bernard, J.K., Delost, R.C., Mueller, F.J., Miller, J.K., and Miller, W.M., 1991. Effect of Wet or Dry Corn Gluten Feed on Nutrient Digestibility and Milk Yield and Composition. Journal of Dairy Science. 74(11): 3913-3919.
    6. Allen, D.M. and Grant, R.J., 2000. Interactions between forage and wet corn gluten feed as sources of fiber in diets for lactating dairy cows. Journal of Dairy Science. 83(2): 322-331.
    7. Biricik, H., Gencoglu, H., Bozan, B., Gulmez, B.H. and Turkmen, I.S., 2007. The effect of dry corn gluten feed on chewing activities and rumen parameters in lactating dairy cows. Italian Journal of Animal Science. 6: 61-70.
    8. Mullins, C.R., Gringsby, K.N., Anderson, D.E., Titgemeyer, E.C. and Bradford, B.J., 2010. Effects of feeding increasing levels of wet corn gluten feed on production and ruminal fermentation in lactating dairy cows. Journal of Dairy Science. 93(11): 5329-5337.
    9. Rodrigues, P.B., Roastango, H.S., Albino, L.T., Gomes, P.C., Barboza, W.A. and Nunes, R.V., 2001. True aminoacids of millets, corn and corn byproducts, determined with cecectomized adult cockerels. Rev, bras. Zootec. 30(6S): 2046-2058.
    10. Ramos, L.N., Teixeira, L.A., Rostango, H.S., Araojo, A.M. and Rodraigues, P.B., 2007. Metabolizable energy values of feedstuffs to broilers. Braz. J. Anim. Sci. 36(5): 1354-1358.
    11. AOAC. 2005. Official Methods of Analysis. Association of Official Analytical Chemists, Arlington, Virginia, U.S.A. (15 ed.) 37-84.
    12. Menke, K.H. and Steingass, H., 1988. Estimation of energetic feed value obtained from chemical analysis and in vitro production using rumen fluid. Animal Research and Development. 28: 7-55.
    13. Tilley, J.M.A. and Terry, R.A., 1963. A Two-Stage technique for the in vitro digestion of forage crops. J.BR. grass1. Soc. 18: l01.
    14. Safaei, , Fatahnia, F. and Ameli, M., 2019. Bio-technique of Rumen Fistulation on Holstein cow. Applied Animal Science Research Journal. 8(13): 59-64. (In Persian)
    15. Anele, U.Y., Südekum, K.H., Hummel, J., Arigbede, O.M., Oni, A.O., Olanite, J.A., Böttger, C., Ojo, V.O. and Jolaosho, A.O., 2011. Chemical characterization, in vitro dry matter and ruminal crude protein degradability and microbial protein synthesis of some cowpea (Vignaungui culata Walp) haulm varieties. Animal Feed Science and Technology. 163: 161-169.
    16. Chen, X.B., 1995. Fitcurve macro, IFRU, the Macaulay Institute, Aberdeen, UK.
    17. Makkar, H.P.S., 1995. Applications of the in vitro gas method in the evaluation of feed resources and enhancement of nutritional value of tannin-rich tree/browse leaves and agro-industrial by-products. Animal Production and Health Section, International Atomic Energy Agency, Vienna.
    18. Tisserand, J.I. and Valls, M., 2004. Evaluation of the Nutritive Value of Mediterranean Roughages. Mediterranean Agronomic Institute of Zaragoza (IAMZ): International Centre for Advanced Mediterranean Agronomic Studies (CIHEAM).
    19. Givens, D.I., Owen, E., Oxford, R.F.E. and Omed, H.M., 2000. Forage Evaluation Ruminant Nutrition.CAB International, Wallingford, U.K. 282-286.
    20. Czerkawski, J.W., 1986. An introduction to rumen studies. Pergamum Press, Oxford, UK.
    21. Eftekhari, M., Zali, A., Saedi, S., Ganjkhanlou, M. and Safaei, A., 2021. Comparison of feedlot performance and carcass characteristics of pure and crossbred of Lori-bakhtiari and Romanov lambs. Journal of Animal Environment. 13(2): 95-100. (In Persian)
    22. R statistical software. 2022. R 4.2.0. (www.r-project.org). The R Journal.
    23. Van Soest, P.J., 1967. New chemical procedures for evaluation forages. Journal of Animal Science. 23: 838-847.
    24. Church, D.C., 1991. Livestock feeds and Feeding. Prentice-Hall. International, Inc. 350. (3 ed.) 97-99.
    25. Klopfenstein, T.J., Roth, L., Fernandez-Rivera, S. and Lewis, M., 1987.Corn residues in beef production systems. J. Anim. Sci. 65: 1139-1148.
    26. Blasi, D.A., Drouillard, J. Brouk, M.J. and Montgomery, S.P., 2001. Corn Gluten Feed, Composition and Feeding Value for Beef and Dairy Cattle. Kansas State University Agricultural Experiment Station and Cooperative Extension Service. At:http://www.oznet.ksu.edu.
    27. Karimi, A., Safaei, A. and Aghashahi, A., 2019. Evaluation of the effect of treated maize stalklage with urea and molasses in fattening performance of Turky-Ghashghaii male lambs. Journal of Animal Environment. 11(3): 45-50. (In Persian)
    28. McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A. and Sinclair, L.A., 2010. Animal nutrition. 714 p.
    29. Callison, S.L., Firkins, J.L., Eastridge, M.L. and Hull, B.L., 2001. Site of nutrient digestion by dairy cows fed corn of different particle sizes or steam-rolled. Journal of Dairy Science. 84: 1458-1467.
    30. Segers, J.R., Stelzleni, A.M., Pringle, T.D., Froetschel, M.A., Ross, C.L. and Stewart, R.L., 2014. Use of corn gluten feed and dried distillers grains plus soluble as a replacement for soybean meal and corn for supplementation in a corn silage-based stocker system. Department of Animal and Dairy Science, University of Georgia. Athens.
    31. Ehsani, P., Teimouri Yansari, A.A., Chashnidel, Y. and Ghorbani, G., 2019. The effect of Particle size and harvesting steps of forage corn on silage characteristics, digestibility and Nutrients consumption of Holstein dairy cows. Journal of Animal Environment. 11(2): 53-62. (In Persian)
    32. Donohue, M. and Cunningham, D.L., 2009. Effects of grain and oilseed prices on the costs of US poultry production. J. Appl. Poult. Res. 18: 325-337.
    33. McDonald, P., Edwards, R.A., Greenhalgh, J.F.D., Morgan, C.A., Sinclair, L.A. and Wilkinson, R.G., 2011. Animal Nutrition. (7th ed). Longman Group UK, Harlow, UK. 693 p.
    34. Russell, J.R., Loy, D.D., Anderson, J.A. and Cecava, M.J., 2011.Potential of chemically treated corn stover and modified distiller grains as a partial replacement for corn grain in feedlot diets. ISU Anim. Ind. Rep. 665 p. ASL R2586.