پاکسازی آفت کش ارگانوفسفره کلریپریفوس از محیط آبی با استفاده از مدیای نانو ذرات کربن در سیستم تله ذره گیر مجهز به بیودراف

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

10.22034/aej.2022.338586.2792

چکیده

امروزه از سموم ارگانوفسفره به طور گسترده‌ای برای افزایش بازدهی و کار‌آیی محصولات کشاورزی و کنترل بیماری‌های منتقله توسط بندپایان ناقل بیماری‌ها استفاده می‌شود. این سموم به طور وسیع از طریق فاضلاب‌های کشاورزی به منابع آبی وارد گردیده و خسارات جبران‌ناپذیری در منابع آبی برجای می گذارند. بر همین اساس هدف از انجام پژوهش حاضر، اجرای پاکسازی آفت‌کش ارگانوفسفره کلریپریفوس از محیط آبی با استفاده از جاذب نانو ذرات کربن در سیستم تله ذره گیر مجهز به بیودراف می باشد. از جمله دلایل متعددی که کربن فعال را به جاذب بالقوه‌ای برای حذف آلودگی‌ها از محیط آبی تبدیل کرده است می توان به ناحیه سطحی بزرگ، ساختار میکروسکوپی و ماهیت شیمیایی آن اشاره نمود، همچنین کارایی جذب سطحی آلودگی های آلی موجود در محیط آبی به میکروسپورهای کربن فعال بستگی دارد. در مطالعه حاضر، نمونه‌برداری‌ها در یک بازه زمانی دوازده روزه صورت گرفت. فاکتورهای مورد ارزیابی در این مطالعه جهت تعیین کاهش میزان سم در آب میزان غلظت آفت کش درآب، میزان جذب نور و pH آب بودند. جاذب نانو کربن در ورودی سیستم تله ذره گیر مجهز به بیودراف تعبیه گردید. میزان جذب نور با دستگاه اسپکتروفتومتری اندازه گیری شد. منحنی استاندارد آفت کش مورد استفاده در این آزمایش با استفاده از غلظت های مختلفی از آن رسم گردید و سپس از این طریق غلظت سم موجود در هر نمونه اندازه گیری شد. جهت اندازه گیری pH آب از pH سنج دیجیتالی استفاده گردید. با داشتن غلظت اولیه 60 میلی‌گرم در لیتر آفت‌کش غلظت آفت کش در پایان آزمایش به 0/075±2/07 کاهش یافت و راندمان کاهش آن 96/55% برآورد شد. میزان جذب نور در پایان آزمایش به 0/005±0/008 کاهش یافت و راندمان کاهش آن 96/32% محاسبه گردید. میزان pH آب روندی افزایشی داشت و در پایان دوره به 8/25 رسید. بین تغییرات غلظلت آفت کش و همچنین تغییرات میزان جذب نور از آغاز تا پایان آزمایش اختلافات معنی داری یافت شد (0/05˂P). براساس مطالعه حاضر می توان نتیجه گرفت که کربن فعال عملکرد مناسبی در ایجاد شرایط قلیایی و حذف آفت کش در غلظت مورد استفاده از آفت کش کلریپریفوس، در این مطالعه (60 میلی گرم در لیتر) داشته است، بنابراین به علت موثر بودن و کم هزینه بودن، این روش جهت تصفیه آفت کش ارگانوفسفره کلریپریفوس و ترکیبات مشابه پیشنهاد می گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Purification of chlorpyriphos organophosphate pesticide from Aquatic environment by using carbon nanoparticles media in a Bit Trap Filter equipped with a bioDrOF

نویسندگان [English]

  • Mahboobeh Mirzaei
  • Arash Javanshir khoei
  • Kiadokht Rezaei
Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Organophosphate pesticides are widely used today to increase the yield and efficiency of agricultural products and to control diseases transmitted by disease-carrying arthropods. These toxins enter water sources extensively through agricultural wastewater and cause irreparable damage to water resources. The aim of the present study was to purify the chlorpyriphos organophosphate pesticide from the Aquatic environment using adsorbents of carbon nanoparticles in the bioDrOF system. Among the many reasons that make activated carbon potential adsorbent for the removal of contaminants from the aquatic environment, can point to the large microscopic structure, the large surface erea and chemical nature, the adsorption efficiency of organic pollutants in the environment also depends on activated carbon microspores. Sampling was performed over a period of twelve days. The factors evaluated in this study were to determine the reduction of toxins in the water, including the amount of pesticide concentration in the water, light absorption and water ph. Nanocarbon adsorbent was instslled at the entrance of the Bit Trap Filter equipped with bioDrOf. The adsorption of light was measured by spectrophotometry. The standard pesticide curve used in this experiment was plotted using different concentration and then measured through this pesticide in each sample. A digital pH meter was used to measure the pH of the water. With an initial concentration of 60 mg per one pesticide, the pesticide concentration at the end of the experiment decreased to 2.07 ± 0.075 and its reduction efficiency was estimated to be 96.55%. The amount of light absorption at the end of the experiment decreased to 0.008 ± 0.005, which was estimated to reduce 96.32%. There was an increasing trend of water pH and at the end of the period it reached 8.25. Significant differences were found between changes in pesticide concentration and also between changes in light absorption from the beginning to the end of the experiment (P˂0.05). It can be concluded based on the present study that activated carbon had a good performance to create alkaline conditions and remove pesticides at the concentration used by chloriprifos in this study (60 mg/l). Therefore, due to the effectiveness and low cost of this method for the treatment of organophophate Pesticide Chloriprifus and similar compounds is recommended.

کلیدواژه‌ها [English]

  • Pesticide
  • Chlorpyrifos
  • Activated carbon
  • Bit Trap Filter
  • Purification
  1. Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, J.C. and García-Río, L., 2008. The mobility and degradation of pesticides in soils and the pollution of groundwater resources, Agric. Ecosyst. Environ. 123: 226-247.
  2. Gusmaroli, L., Insa, S. and Petrovic, M., 2018. Development of an online SPEUHPLC- MS/MS method for the multiresidue analysis of the 17 compounds from the EU “Watch List. Anal Bioanal Chem. 410(17): 4165-4176. https://doi.org/10.1007/s00216-018-1069.
  3. Sibiya, I., Olukunle, O. and Okonkwo, O., 2017. Seasonal variations and the influence of geomembrane liners on the levels of PBDEs in landfill leachates, sediment and groundwater in Gauteng Province, South Africa. Emerg Contam. 3(2): 76-84.
  4. Dehghani, R., 2010. Environmental toxicology.1th ed. Publications of Tak Derakhat and Kashan University of Medical Sciences. 172-206.
  5. Osman, K.A. and Al-Rehiayani, S., 2003. Risk assessment of pesticide to human and the environment Saudi. J Biol Sci. 10: 81-106.
  6. Bharati, P., Reddy, A.G., Reddy, A.R. and Alpharei, M., 2011. A study of ceertaiu urherds Agaiut cholirprriphos induce changes in lipid and pritein profile in poulfry. Toxicol. 16: 44-46.
  7. Xing, H., Wang, X., Sun, G., Gao, X., Xu, S. and Wang, X., 2012. Effects of atrazine and chlorpyrifos on activity and transcription of glutathione S-transferase in common carp (Cyprinus carpio). Environ Toxicol Pharmacol. 33(2): 233-244. doi:10.1016/j. etap.2011.12.014.
  8. Tomlin, C.D.S., 2009. The pesticide manual: a world compendium. British Crop Production Council, Alton.
  9. Mary John, E. and Manakulam Shaike, J., 2015. Chlorpyrifos: pollution and remediation. Springer International Publishing Switzerland. Environ Chem Lett. 13: 269-291.
  10. Fekri, N., Jamili, Sh., Ehteshami, F., Valipoor, A. and Zamini, A., 2013. Effects of diazinon on Hematological factors of Caspian White fish (Rutilus frisii kutum). Journal of Animal Environment. 4(4): 155-162. (In Persian)
  11. Imanpoor, R. and Moosavi, M., 2020. Effect of chlorpyrifos (Doresban) agricultural poison on sex hormones and gonadal quality of goldfish (Carassius auratus). Journal of Animal Environment. 11(4): 265-270. (In Persian)
  12. Benitz, F.J., Acero, J.L. and Real, F.J., 2002. Degradation of carbofuran by using ozone, UV, radiation and advanced processes. J of Hazardous Materials. 89(1): 51-65.
  13. Simeonidis, K., Mourdikoudis, S., Kaprara, E., Mitrakas, M. and Polavarapu, L., 2016. Inorganic engineered nanoparticles in drinking water treatment: a critical Revie. Environmental Science: Water Research & Technology. 2(1): 43-70.
  14. Lazarevi´c-Paˇsti, D., Paˇsti, T.L.A., Joki´c, M.B., Babi´c, B.M. and Vasi´c, V.M., 2016. Heteroatom-doped mesoporous carbons as efficient adsorbents for removal of dimethoate and omethoate from water. RSC Advances. 6(67): 62128-62139.
  15. Park, J.E., Lee, G.B., Hong,B.U. and Hwang, S.Y., 2019. Regeneration of Activated Carbons Spent by Waste Water Treatment Using KOH Chemical Activation Appl. Sci. 9: 5132. doi:10.3390/app9235132.
  16. Acharya, J., Sahub, J.N., Sahoob, B.K., Mohantyc, C.R. and Meikapb, B.C., 2009. Removal of chromium(VI) from wastewater by activated carbon developed from tamarind wood activated with zinc chloride. Chemical Engineering Journal. 150: 25-39.
  17. Han, R., Ding, D., Xu, Y., Zou, W., Wang, Y., Li, Y. and Zou, L., 2008. Use of rice husk for the adsorption of congo red from aqueous solution in column mode. Bio Tec. 99: 2938-2946.
  18. Zazouli, M.Y.Z., Taghavi, M., Akbari-adergani, B. and Yazdani Cherati, J., 2013. Removing Cadmium from Aqueous Environments using L-cysteine Functionalized Single- Walled Carbon Nanotubes. J Mazandaran Univ Med Sc. 23(98): 37-47.
  19. Jusoh, A., Hartini, W.J.H. and Endut, A., 2011. Study on the removal of pesticide in agricultural run off by granular activated carbon. Bioresource Technology. 102: 5312-5318.
  20. Mohseni-Bandpei, A., Fattahzadeh, M., Rezaei Kalantary, R. and Eslami, A., 2016. Evaluation of Diazinon Adsorption from Water Solutions Using Magnetic Carbon Nano-Tubes with Fe3O4. Journal of Environmental Health Engineering. 2(4): 283-293. (In Persian)
  21. Moussavi, G., Hosseini, H. and Alahabadi, A., 2013. The investigation of diazinon pesticide removal from contaminated water by adsorption onto NH 4 Cl-induced activated carbon. Chemical Engineering Journal. 214: 172-179.
  22. Kazemi, M., Tahmasbi, A.M., Valizadeh, R., Naserian, A.A. and Soni, A., 2012. Organophosphate pesticides: A general review Agricultural Science Research Journals. 2(9): 512- 522.
  23. Kezemi Balgehshiri, M.J., Alighardashi, A. and Khaksar, A., 2015. Arsenic Removal from Synthetic Water Using Activated Carbon Derived from Walnut Shell. Journal of Water Reuse. 2(1): 49-58. (In Persian)
  24. Venugopal, N.V.S., Sumalatha, B. and Bonthula, S., 2012. Spectrophotometric determination of Malathion (an organophosphorous insecticide) with Potassium bromate. Eurasian Journal of Analytical Chemistry. 8: 131-135.
  25. Francisco Claudio, F., Allen, L., Marcos Antônio, A. and Ronaldo, F., 2013. Use of Microwave-Assisted Oxidation for Removal of the Pesticide Chlorpyrifos from Aqueous Media, International Journal of Civil & Environmental Engineering IJCEE-IJENS.
  26. Hassan, A., Abed, M. and Ismael, A., 2009. Removal of lindane and melathion from wastewater by activated carbon prepeared from apricot stone. Assiut University Bulletin for Environmental Researches. 12: 1-8.
  27. Pirsaheb, M. and Dargahi, A., 2016. Performance of granular activated carbon to diazinon removal from aqueous solutions. Journal of Environmental Science and Technology. 18(3): 117-126. (In Persian)
  28. Maji, S.K., Pal, A. and Pal, T., 2008. Arsenic removal from real-life groundwater by adsorption on laterite soil. Journal of Hazardous Materials. 151(2-3): 811-820.
  29. Singh, V.K., Singh, R.S., Tiwari, P.N., Singh, J.K., Gode, F. and Sharma, Y.C., 2010. Removal of malathion from aqueous solutions and waste water using fly ash. Journal of Water Resource and Protection. 2: 322-330.
  30. Sharma, D.C. and Forster, C.F., 1996. Removal of hexavalent chromium from aqueous solutions by granular activated carbon. Water South Afric. 22: 153-160.
  31. Jafarzadeh, N., 2015. Feasibility of gradual removal of malathion and Diazinon agricultural toxins in the particle trap structure. Master's thesis in the field of Trap Filter equipped. University of Tehran. Faculty of Agriculture and Natural Resources. 80 p. (In Persian)
  32. Habila, M.A., ALOthman, Z.A., Al-Tamrah, S.A., Ghafar, A.A. and Soylak, M., 2015. Activated carbon from waste as an efficient adsorbent for malathion for detection and removal purposes. Journal of Industrial and Engineering Chemistry. 32: 336-344.
  33. Momi, T., Lazarevi Pašti, T., Bogdanovi, U., Vodnik, V., Mrakovi, A.; RakoIevi, Z., Vladimir B.P. and Vasi, V., 2016. Adsorption of Organophosphate Pesticide Dimethoate on Gold Nanospheres and Nanorods. Hindawi Publishing Corporation Journal of Nanomaterials. 11 p. https://doi.org/10.1155/2016/8910271.
  34. Sefidkar, A., Ghadamyari, M. and Najafpour, A., 2013. A comparative study of the effectiveness of activated carbons prepared from straw, stubble and rice bran and commercial activated carbons in reducing the residual amount of Diazinon from drinking water. National Conference on Environmental Health of Iran. Number 16.
  35. Raymond, A., 2008. Cloyd How does water and spray solation PH impact pesticide activity, Kansas university.
  36. Plant Protection Organization. 2019. Water quality and its effect on the performance of pesticides. 16 p.
  37. Budinova, T., Savova, D., Tsyntsarski, B., Ania, C.O., Cabal, B., Parra, J.B. and Petrov, N., 2009. Biomass waste-derived activated carbon for the removal of arsenic and manganese ions from aqueous solutions. Applied Surface Science. 255(8): 4650-4657.
  38. Nethaji, S., Sivasamy, A. and Mandal, A., 2013. Preparation and characterization of corncob activated carbon coated with nano sized magnetite particles for theremovalof Cr (VI). J. Bioresource Technol. 134: 94-100.