کارایی سیستم تله ذره گیر در تصفیه فاضلاب صنعتی کارخانه الکل سازی تخلیه شونده به سد منجیل در استان البرز

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

چکیده

استفاده مجدد از پساب ها و فاضلاب ها سال های بسیاری است که مورد توجه و اهمیت قرار داشته است. هم چنین کاهش بار آلودگی فاضلاب ها جهت رهاسازی به محیط به منظور حفظ سلامت محیط زیست و جانداران وابسته، ضروری است. در سال اخیر با توجه به ظهور همه‌گیری کووید 19 و افزایش تولید و استفاده الکل، فاضلاب حاصل از تولید الکل افزایش چشمگیری داشته است. از طرفی با توجه به خشکسالی و کمبود آب در قرن حاضر، استفاده مجدد از پساب ها راهی کارآمد در کاهش معضلات به وجود آمده است. با تکیه بر عملکرد سیستم تله ذره گیر، تصفیه و بازیافت آب از پساب حاصل از الکل سازی در دو نوع ویناس و استیلاژ مورد مطالعه قرار گرفت. فاکتورهای BOD، COD و pH در دو نمونه فاضلاب استیلاژ و ویناس، سنجیده شدند. سپس در مخزنی طی سه ساعت تحت تأثیر فرآیند نانوبابلینگ اکسیژن خالص قرار گرفته و پس از آن وارد سیستم تصفیه تله ذره گیر شدند و در خروجی طی ده روز، هر 24 ساعت به صورت تصادفی یک نمونه گرفته شده و مورد ارزیابی قرار گرفتند. فاکتورهای BOD، COD و pH به ترتیب در فاضلاب ویناس به میزان 4348/08±37216/67، 3629/51±78566/65 و 4/30 و در فاضلاب استیلاژ به میزان 3003/89±43166/68، 9106/04±91700/00 و 5/20 به دست آمد. طی مراحل آزمایش و پس از ده روز میزان این فاکتورها در پساب ویناس تصفیه‌شده 32/36±953/50، 107/58±2437/33 و 7/20 و در پساب استیلاژ تصفیه شده 67/66±1392/67، 174/16±3953/34 و 7/80 گزارش شد. بر اساس نتایج به دست آمده به ترتیب میزان فاکتورهای BOD و COD در فاضلاب الکل سازی از نوع ویناس 97/44% و 96/90%، هم چنین در فاضلاب الکل سازی از نوع استیلاژ 96/77% و 95/69% کاهش داشته اند. pH در فاضلاب ویناس 40/28% و در استیلاژ 33/33% افزایش داشته است. در این آزمایش کارایی سیستم تله ذره گیر در هر دو نوع فاضلاب مشخص و مورد تایید است اما در فاضلاب ویناس عملکرد بهتری نشان داده شده. در هر دو نوع فاضلاب نیز فاکتور BOD بیش ترین کاهش را داشته و کم ترین تغییرات به صورت عددی متعلق به pH بوده است. در نهایت با توجه به کارایی مناسب و ارزان قیمت بودن ساخت، سیستم تله ذره‌گیر به عنوان سیستمی کارآمد و مقرون به صرفه در زمینه تصفیه فاضلاب صنایع الکل‌سازی پیشنهاد می گردد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Efficiency of Bit Trap Filter in industrial wastewater treatment of alcohol factory discharge to Manjil Dam in Alborz province

نویسندگان [English]

  • Sayyed Ali Moezzi
  • Arash Javanshir khoei
  • Kiadokht Rezaei
Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Reuse of wastewater and sewage has been considered for many years. It is also necessary to reduce the burden of sewage pollution to be released into the environment in order to maintain the health of the environment and dependent organisms. In recent years, due to the advent of the Covid 19 epidemic and the increase in the production and use of alcohol, the effluent from alcohol production has increased significantly. On the other hand, due to drought and water shortage in the current century, the reuse of wastewater has become an effective way to reduce problems. Relying on the performance of the Bit Trap Filter, water treatment and recycling of effluent from alcohol production in two types of vinasse and stillage were studied. BOD, COD and pH factors are measured in two samples of stillage and vinasse wastewater. They are then exposed to pure oxygen nano-bubbling in a tank for three hours. After that, they enter the particle trap treatment system and at the output for ten days, a sample is randomly taken and measured every 24 hours. Each experiment was performed with three replications. BOD, COD and pH factors were obtained in vinasse wastewater at 37216.67 ± 4348.08, 78566.65 ± 3629.51 and 4.30 and in stillage wastewater at 43166.68 ± 3003.89, 91700.00 ± 9106.04 and 5.20. During the experimental stages and after ten days, the amount of these factors was reported in treated vinasse effluent 953.50 ± 32.36, 2437.33 ± 107.58 and 7.20 and in treated stillage effluent 1392.67 ± 93.66, 3953.34 ± 174.16 and 7.80. Based on the obtained results, the amount of BOD and COD factors in alcohol production wastewater of vinasse type decreased by 97.44% and 96.90%, respectively, and in alcohol production wastewater of extrusion type decreased by 96.77% and 95.69%. The pH of the vinasse wastewater increased by 40.28% and in the stillage by 33.33%. In this experiment, the efficiency of the Bit Trap Filter in both types of wastewaters is known and confirmed, but in the vinasse wastewater, better performance is shown. In both types of wastewaters, the BOD factor had the highest decrease and the lowest changes were numerically related to pH. Finally, due to the appropriate efficiency and low cost of construction, the particle trap system is proposed as an efficient and cost-effective system in the field of wastewater treatment in the alcohol industry.

کلیدواژه‌ها [English]

  • Bit Trap Filter
  • Stillage
  • Vinasse
  • Nano-bubbling
  • Wastewater treatment
  • Fermentation industry
  1. Pazuki, M., Shaygan, J. and Afshari, A., 2006. Investigation of wastewater treatment methods of alcohol production units. Journal of Environmental Studies. 32(39): 19-32. (In Persian)
  2. Sheibani, S., Sedaghatpour, A. and Mehrabani, M.M., 2012. An overview of different industrial wastewater treatment methods, the first national conference and specialized exhibition on environment, energy and clean industry. (In Persian)
  3. Rezaei, K., 2014. Investigating the efficiency of biodraft system in the treatment of wastewater from the cultivation of some aquatic animals. Master's thesis, University of Tehran. 86-94. (In Persian)
  4. Amini, M., Younesi, H., Najafpour, Gh. and Zinatizadeh Lorestani, A.A., 2012. Effect of aeration time and flow rate on wastewater treatment in bioreactor with granular sludge. Journal of Animal Environment. 5(3): 83-94. (In Persian)
  5. Arefan, R. and Narimani, M., 2014. An overview of industrial wastewater treatment methods, National Conference on Sustainable Agriculture, Environment and Rural Development. Kouhdasht. https://civilica.com/doc/379099 (In Persian)
  6. Cho, S., Luong, T.T., Lee, D., Oh, Y.K. and Lee, T., 2011. Reuse of effluent water from a municipal wastewater treatment plant in microalgae cultivation for biofuel production. Bioresource technology. 102(18): 8639-8645.
  7. Azarm, , Javadzadeh, N., Jalilzadeh, R., 2020. Investigation of Chlorella vulgaris capacity in absorption of Nitrate and Phosphate from wastewater of fish farming pool in Khuzestan Province. Journal of Animal Environment. 12(2): 291-298. (In Persian)
  8. David, M.K., 2017. A Review Paper on Industrial Waste Water Treatment Processes. In: University of Nigeria, Nsukka.
  9. Havryshko, M., Popovych, O. and Yaremko, H., 2020. Ecological problems of enterprises of alcohol industry. Environmental Problems. 2(5): 107-112.
  10. Rodrigues Reis, C.E. and Hu, B., 2017. Vinasse from sugarcane ethanol production: better treatment or better utilization? Frontiers in Energy Research. 5(7).
  11. Balbuena, O.B.F., 2021. Sugarcane stillage treatment by membrane distillation. 156 p.
  12. Satyawali, Y. and Balakrishnan, M., 2008. Wastewater treatment in molasses-based alcohol distilleries for COD and color removal: a review. Journal of environmental management. 86(3): 481-497.
  13. Moghads-Nasab, M., Takdestan, A. and Sabzalipour, S., 2014. Quantitative investigation and characteristics of effluent produced from alcohol industries and its treatment methods, the first national conference on the dimensions of the implementation of the 550,000-hectare agricultural development plan. Ahvaz https://civilica.com/doc/434222. (In Persian)
  14. Sawyer, C.N. and Anderson, E.J., 1949. Aerobic treatment of rum wastes. Water & sewage works. 96(3): 112-114.
  15. Reis, L.C. and Sant'Anna Jr, G.L., 1985. Aerobic treatment of concentrated wastewater in a submerged bed reactor. Water Research. 19(11): 1341-1345.
  16. Sirianuntapiboon, S., Zohsalam, P. and Ohmomo, S., 2004. Decolorization of molasses wastewater by Citeromyces WR-43-6. Process biochemistry. 39(8): 917-924.
  17. Vijayaraghavan, K., Ramanujam, T. and Balasubramanian, N., 1999. In situ hypochlorous acid generation for the treatment of distillery spentwash. Industrial & engineering chemistry research. 38(6): 2264-2267.
  18. Yasar, A., Ahmad, N., Chaudhry, M.N., Rehman, M.S.U. and Khan, A.A.A., 2007. Ozone for Color and COD Removal of Raw and Anaerobically Biotreated Combined Industrial Wastewater. Polish Journal of Environmental Studies. 16(2):289-294.
  19. Hadavifar, M., Younesi, H. and Zinatizadeh, A., 2010. Application of Ozone and Granular Activated Carbon for Distillery Effluent Treatment. Water and Wastewater Consulting Engineers. 21(2): 10-18. (In Persian)
  20. Yazdanbakhsh, A., Eslami, A., Abtahi, M. and Danandeh oskouie, M., 2019. COD removal and decolorization efficacy of ozonation process in spiral high pressure super mixing reactor for treatment of alcohol distilleries wastewater. Journal of Health in the Field. 7(3): 29-39. (In Persian)
  21. Da Costa Filho, B.M., Silva, G.V., Boaventura, R.A., Dias, M.M., Lopes, J.C. and Vilar, V.J., 2019. Ozonation and ozone-enhanced photocatalysis for VOC removal from air streams: Process optimization, synergy and mechanism assessment. Science of the total environment. 687: 1357-1368.
  22. Martin, N. and Galey, C., 1994. Use of static mixer for oxidation and disinfection by ozone. Ozone: science & engineering. 16(6): 455-473.
  23. Mani Varnosfadrani, A., 2014. Investigating the performance of biodraft system based on algal biofilm in removing nitrogen, phosphorus and total carbon from urban raw sewage, animal husbandry and dairy industries. Master's thesis, University of Tehran. 79-93. (In Persian)
  24. Jafarzadeh, N., 2016. Feasibility of Gradual Removal of Agricultural Poisons Malathion and Diazinon in the Sedimentation Trap Structure. Master's Thesis, University of Tehran. 48-66. (In Persian)
  25. Mirzaei, M., 2016. Studying the possibility of reducing organophosphorus pesticide (chlorpyrifos) in a joint structure of biodraf and oyster (Anodonta cygnea). master's thesis, University of Tehran. 69-98. (In Persian)
  26. Dehghani, F., 2016. Separation of lead heavy metal from paper pulp effluent using biodraf purification method with particle trap and its effect on Anodonta signea and Derisinidae polymorpha. Master's thesis, University of Tehran. 49-58. (In Persian)
  27. Bayat Ghyashi, L., 2018. Study of the efficiency of the biodraft system in reducing nitrogenous pollutants from the waste water of fishing industries. Master's Thesis, University of Tehran. 40-50. (In Persian)
  28. Beltrán, F.J., Garcı́a-Araya, J.F. and Álvarez, P.M., 2001. pH sequential ozonation of domestic and wine-distillery wastewaters. Water Research. 35(4): 929-936.
  29. Kida, K., Morimura, S., Abe, N. and Sonoda, Y., 1995. Biological treatment of schochu distillery wastewater. Process biochemistry. 30(2): 125-132.
  30. Lovato, G., Batista, L.P.P., Preite, M.B., Yamashiro, J.N., Becker, A.L.S., Vidal, M.F.G., Pezini, N., Albanez, R., Ratusznei, S.M. and Rodrigues, J.A.D., 2019. Viability of Using Glycerin as a Co-substrate in Anaerobic Digestion of Sugarcane Stillage (Vinasse): Effect of Diversified Operational Strategies. Appl Biochem Biotechnol. 188(3): 720-740.
  31. Garcia-Calderon, D., Buffiere, P., Moletta, R. and Elmaleh, S., 1998. Anaerobic digestion of wine distillery wastewater in down-flow fluidized bed. Water Research. 32(12): 3593-3600.
  32. Ghosh, S., Ombregt, J.P. and Pipyn, P., 1985. Methane production from industrial wastes by two-phase anaerobic digestion. Water research. 19(9): 1083-1088.
  33. Maiorella, B., Blanch, H.W. and Wilke, C.R., 1983. By‐product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnology and bioengineering. 25(1): 103-121.
  34. Bernardo, E.C., Egashira, R. and Kawasaki, J., 1997. Decolorization of molasses' wastewater using On the other hand, due to drought and water shortage in the current century, the reuse of wastewater has become an effective way to reduce problems. Activated carbon prepared from cane bagasse. Carbon. 35(9): 1217-1221.
  35. Chaudhari, P.K., Mishra, I. and Chand, S., 2008. Effluent treatment for alcohol distillery: catalytic thermal pretreatment (catalytic thermolysis) with energy recovery. Chemical Engineering Journal. 136(1): 14-24.
  36. Gebreeyessus, G.D., Mekonnen, A. and Alemayehu, E., 2019. A review on progresses and performances in distillery stillage management. Journal of Cleaner Production. 232: 295-307.
  37. Maragheh Zoeik, R. and Abdullahzadeh, S., 1387. The new method of wastewater treatment of alcohol factory, the first international conference on the position of safety, health and environment in wastewater engineering organizations. Esfahan. https://civilica.com/doc/43057. (In Persian)
  38. Thakur, C., Srivastava, V.C. and Mall, I.D., 2014. Aerobic degradation of petroleum refinery wastewater in sequential batch reactor. Journal of Environmental Science and Health, Part A. 49(12): 1436-1444.
  39. Fitzgibbon, F., Nigam, P., Singh, D. and Marchant, R., 1995. Biological treatment of distillery waste for pollution‐remediation. Journal of Basic Microbiology. 35(5): 293-301.
  40. Lei, L., Gu, L., Zhang, X. and Su, Y., 2007. Catalytic oxidation of highly concentrated real industrial wastewater by integrated ozone and activated carbon. Applied Catalysis A: General. 327(2): 287-294.
  41. Lele, S., Rajadhyaksha, P. and Joshi, J., 1989. Effluent treatment for alcohol distillery: thermal pretreatment with energy recovery. Environmental progress. 8(4): 245-252.
  42. Mandal, A., Ojha, K. and Ghosh, D., 2003. Removal of colour from distillery wastewater by different processes. Indian Chemical Engineer. 45(4): 264-267.
  43. Yavuz, Y., 2007. EC and EF processes for the treatment of alcohol distillery wastewater. Separation and purification technology. 53(1): 135-140.