تجزیه و تحلیل انرژی و انتشار گازهای گلخانه‌ای پرورش گاو شیری مطالعه موردی: استان ایلام

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی مکانیک بیوسیستم، دانشکده کشاورزی، دانشگاه ایلام، ایلام، ایران

10.22034/aej.2021.295746.2587

چکیده

هدف از این تحقیق تجزیه و تحلیل روند انرژی مصرفی و انتشار گازهای گلخانه‌ای در فرآیند تولید شیر در 25 واحد پرورش گاوشیری بود. اطلاعات مورد نیاز از طریق پرسشنامه تخصصی با مدیران واحدها و بهره‌برداران در سال 1399 در شهرستان ایوان به دست آمد. مجموع انرژی‌های ورودی و خروجی به ازای یک راس به ترتیب برابر 53687/79 و 59418/37 مگاژول به ازای هر راس گاو برآورد گردید. شاخص‌های انرژی شامل کارایی، بهره‌وری و شدت انرژی برای گاوداری به ترتیب 1/11، 0/15 کیلوگرم بر مگاژول و 6/45 مگاژول بر کیلوگرم به ازای هر راس گاو به دست آمد. نتایج حاصل از تابع کاب داگلاس نشان داد تاثیر نهاده‌های انرژی نیروی انسانی، ماشین‌ها و تجهیزات خوراک دام به ترتیب با ضرایب رگرسیون 0/18، 0/02 و 1/01 بر روی عملکرد شیر تولیدی به ازای یک راس دام مثبت و تأثیر نهاده‌های سوخت‌های فسیلی و الکتریسیته به ترتیب با ضرایب رگرسیون 0/04- و 0/05- بر عملکرد منفی محاسبه شد. مجموع آلایندگی ناشی از انتشار گازهای گلخانه‌ای واحدهای پرورش گاو شیری برابر 601/32 کیلوگرم دی اکسید کربن به ازای هر راس گاو به‌دست آمد که بیش ترین میزان مربوط به نهاده سوخت دیزل با 66/55 درصد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Estimation of energy consumption and greenhouse gas emissions of dairy farming Case study: Ilam province

نویسندگان [English]

  • Amir Azizpanah
  • Mahsa Hemati
Department of mechanics Biosystem, College of Agriculture, University of Ilam, Ilam, Iran
چکیده [English]

The purpose of this study was to analyze the trend of energy consumption and greenhouse gas emissions in the milk production process in 25 dairy farms. The required information was obtained through a specialized questionnaire with unit managers and operators in 1399 in Ivan city. The total input and output energies per head were estimated to be 536.79 and 599418.37 MJ per each head. Energy indices including efficiency, productivity and energy intensity for cattle were 1.11, 0.15 kg/mJ and 6.45 MJ/kg per cow, respectively. The results of Cobb Douglas function showed the effect of manpower energy inputs, machinery and animal feed equipment with regression coefficients of 0.18, 0.02 and 1.01, respectively, on milk yield per positive livestock. And the effect of fossil fuel and electricity inputs on negative performance were calculated with -0.04 and -0.05 regression coefficients, respectively. The total emissions from greenhouse gas emissions of dairy farming breeding units were 601.32 kg of carbon dioxide per cow, the highest amount was related to diesel fuel input with 66.5%.

کلیدواژه‌ها [English]

  • Energy efficiency
  • Cobb Douglas function
  • Sensitivity analysis
  1. Moitzi, G., Daniela, D.A.M.M., Weingartmann, H. and Boxberger, J., 2010. Analysis of energy intensity in selected Austrian dairy farms with focus on concentrate level in feeding. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Agriculture. 67(1): 1843-5386.
  2. Letter Statistics Agriculture. 2010. Volume II. Department of Planning, Economy and International. Office of Statistics and Information Technology. Ministry of Agriculture. (In Persian)
  3. Dashti, Gh., 2008. Evaluation factor productivity growth of the dairy industry. Third Congress of Animal Science, Ferdowsi University of Mashhad. (In Persian)
  4. Sefeedpari, P., Rafiee, S.H., Akram, A. and Mousavi-Avval, S.H., 2012. Application of Fuzzy Data Envelopment Analysis for Ranking Dairy Farms in the View of Energy Efficiency. Journal of Animal Production Advances. 2(6): 284-296.
  5. Meul, M., Nevens, F., Reheul, D. and Hofman, G., 2007. Energy use efficiency of specialised dairy, arable and pig farms in Flanders. Agriculture, Ecosystems & Environment. 119(1): 135-144.
  6. Savar Sofla, S., Seyedsharifi, R., Mansourian, M. and Kazemi, M., 2019. Relationship between temperature-humidity index and test-day milk and fat percentage milk of Holstein dairy cattle in Mediterranean climate of Iran. Journal of Animal Environment. 11(2): 37-46. (In Persian)
  7. Dashtbin, , Zare Shahneh, A., Jahanbakhshi, A. and  Mirtorabi, S.M., 2015.  Study of Some Effective Factors on Reproductive Performance of Holstein Cows in Tehran and Alborz Provinces. Journal of Animal Environment. 7(3): 29-32. (In Persian)
  8. Seidavi, A.R., Ghanipoor, M., Mirmahdavi, S.A., Hosseinpoor, R. and Ghorbani, A., 2016. Estimation and Comparison of Economic Values for Productive Characters in Hybrid and Native Cattles of Guilan Province. Journal of Animal Environment. 7(4): 49-58. (In Persian)
  9. FAO. 2012. Food and Agricultural commodities production. Availableat www.fao.org.
  10. Lundie, S., Feitz, A., Changsirivathanathamrong, A., Jones, M., Dennien, G. and Morain, M. 2003. Evaluation of the environmental performance of the Australian dairy processing industry using life cycle assessment. Centre for Water and Waste Technology, The University of New South Wales, Sydney.
  11. Kiefer, L.R., Menzel, F. and Bahrs, E., 2015. Integration of ecosystem services into the carbon footprint of milk of South German dairy farms. Journal of environmental management. 152: 11-18.
  12. Gollnow, S., Lundie, S., Moore, A. D., McLaren, J., van Buuren, N., Stahle, P. and Rehl, T., 2014. Carbon footprint of milk production from dairy cows in Australia. International Dairy Journal. 37(1): 31-38.
  13. Omara, F.P., 2011. Greenhouse gases in animal agriculture-finding a balance between food production and emissions. Anim. Feed. Sci. Technol. 7(15): 166-167.
  14. Stanford University. 2010. Environmental and Social Impact of the Livestock Revolution Retrieved from: Available from: /http://www.sciencedaily.com.
  15. Azizpanaha, A. and Mohammadi, V., 2018. Energy Modelling and Sensitivity Analysis of Rice production in Ilam, Iran. Journal of Applied Agriculture and Biotechnology. 3(1): 01-13.
  16. Nikkhah, A., Emadi, B., Shabanian, F. and Hamzeh-Kalkenari, H., 2014. Energy sensitivity analysis and greenhouse gas emissions for tea production in Guilan province, Iran. Agroecology. 6(3): 622-633.
  17. Kraatz, S., 2012. Energy intensity in livestock operations–Modeling of dairy farming systems in Germany. Agric. Sys. 110: 90-106.
  18. Nabavi-Pelesaraei, A., Abdi, R. and Rafiee, S., 2017. Neural network modeling of ... Journal of the Saudi Society of Agricultural Sciences. 36(3): 57-69.
  19. Kitani, O., 1999. CIGR Handbook of Agricultural Engineering: Energy and Biomass Engineering. American Society of Agricultural Engineers, Michigan, USA.
  20. Frorip, J., Kokin, E., Praks, J., Poikalainen, V., Ruus, A., Veermäe, I. and Ahokas, J., 2012. Energy consumption in animal production-case farm study.Agronomy research Biosystem engineering. Special. (1): 39-48.
  21. Shortall, O.K. and Barnes, A.P., 2013. Greenhouse gas emissions and the technical efficiency of dairy farmers. Eco. Indi. 29: 478-488.
  22. Clark, J., Beede, D., Erdman, R., Goff, J., Grummer, R., Linn, J., Pell, A., Schwab, C., Tomkins, T. and Varga, G., 2001. Nutrient requirements of dairy cattle: National Academies Press, Washington, D.C., USA.
  23. Pishgar-Komleh, S. H., Sefeedpari, P. and Ghahderijani, M., 2012. Exploring energy consumption and CO2 emission of cotton production in Iran. Journal of Renewable and Sustainable Energy. 4: 33114-33115
  24. Dyer, J.A. and Desjardins, L., 2006. Carbon dioxide emissions associated with the manufacturing of tractors and farm machinery in Canada. Biosystems Engineering. 93: 107-11
  25. Shamsabadi, H., Abdi, M., Ahmad, D. and TaheriRad, A., 2017. Comparison of Energy Consumption and Greenhouse Gas Emission footprint caused by agricultural products in greenhouses and open field in Iran. Energy Equipment and Systems. 5(2): 157-163.
  26. Pishgar-Komleh, S.H. Sefeedpari, P. and Rafiee, S., 2011. Energy and economic analysis of rice production under different farm levels in Guilan province of Iran. Energy. 36(10): 5824-5831.
  27. Lal, R., 2004. Carbon emission from farm operations. Environment International. 30: 981-990.
  28. Ramedani, Z., Rafiee, S. and Heidari, M.D., 2011. An investigation on energy consumption and sensitivity analysis of soybean production farms. Energy. 36: 6340-6344.
  29. Kuswardhani, N., Soni, P. and Shivakoti, G.P., 2013. Comparative energy input– output and financial analyses of greenhouse and open field vegetables production in West Java. Indonesia. En. 53: 83-92.
  30. Sharifi, M., 2018. Energy inputs - Yield relationship and cost analysis of melon production in Khorasan Razavi province of Iran. Engineering in Agriculture, Environment and Food. 11: 109-113.
  31. Sainz, R.D., 2003. Livestock-environment initiative fossil fuels component: framework for calculation fossil fuel use in livestock systems. http://www.fao.org.
  32. Hatirli, S.A., Ozkan, B. and Fert, C., 2006. Energy inputs and crop yield relationship in greenhouse tomato production. Renewable Energy. 31: 427-438.
  33. Soltanali, H., Emadi, B., Rohani, A. and Khojastehpour, M., 2015. Energy Consumption Modeling and Greenhouse Gas Emissions in Dairy farms (Case study: Guilan Province, Iran). Journal of Ruminant Research. 2(4): 175-193. (In Persian)
  34. Maysami, M.J., Olbertz, H. and Ellmer, F., 2013. Energy Efficiency in Dairy Cattle Farming and related Feed Production in Iran. Faculty of Agriculture and Horticulture at Humboldt-Universität zu Berlin.
  35. Ozkan, B., Kurklu, A. and Akcaoz, H., 2004. An input-output energy analysis in greenhouse vegetable production: a case study for Antalya region of Turkey. Biom. Bioen. 26(1): 89-95.
  36. Khakbazan, M., Mohr, R.M., Derksen, D.A., Monreal, M.A., Grant, C.A., Zentner, R.P., Moulin, A.P., McLaren, D.L., Irvine, R.B. and Nagy, C.N., 2009. Effects of alternative management practices on the economics, energy and GHG emissions of a wheat-pea cropping system in the Canadian praprairies. Soil & Tillage Research. 104: 30-38.
  37. Azizpanah, A. and Namdari, M., 2020. Investigation of Greenhouse Gas Emissions, Modelling Energy and Cost Analysis of White Radish Production in West of Iran. Journal of Sciences Vegetables. 4(7): 161-175. (In Persian)
  38. Liu, L., Langer, V., Høgh-Jensen, H. and Egelyng, H., 2010. Life Cycle Assessment of fossil energy use and greenhouse gas emissions in Chinese pear production. Journal of Cleaner Production. 18: 1423-1430.
  39. Khoshnevisan, B. Rafiee, S. Omid, M. and Mousazadeh, H., 2013. Developing an artificial neural networks model for predicting output energy and GHG emission of strawberry production. International Journal of Applied Operational Research. 3(4): 43-54.
  40. Qasemi-Kordkheili, P. and Nabavi-Pelesaraei, A., 2014. Optimization of energy required and potential of greenhouse gas emissions reductions for nectarine production using data envelopment analysis approach. Int. J. Energy Environ. 5: 207-218.
  41. Izadikhah, M. and Emrouznejad, A., 2018. Improving energy efficiency considering reduction of CO2 emission of turnip production: A novel data envelopment analysis model with undesirable output approach. Journal of Cleaner Production. 187(20): 605-615.