بررسی مطلوبیت زیستگاه و اثر پارامترهای فیزیکی بر پورپویز پوزه پهن (Neophocaena phocaenoides) در تالاب خورخوران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه محیط زیست، دانشکده کشاورزی و منابع طبیعی، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

2 گروه محیط زیست، مرکز تحقیقات پسماند و پساب، واحد اصفهان (خوراسگان)، دانشگاه آزاد اسلامی، اصفهان، ایران

3 گروه محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

10.22034/aej.2022.338950.2793

چکیده

شناسایی زیستگاه‌های مطلوب پستانداران دریایی یکی از الزامات تدوین طرح‌های حفاظت از اکوسیستم‌های ساحلی در جنوب ایران است. پورپویز پوزه‌پهن (Neophocaena phocaenoides) بر اساس مشاهده مستقیم و تصادفی از اواخر پاییز تا اواخر زمستان 1399 در منطقه‌ای به وسعت 41500 هکتار در خورخوران جمع آوری گردید. نقشه عمق منطقه با استفاده از مدل نسبت لگاریتم با ضریب تشخیص 0/784 تهیه و به همراه شیب بستر، عرض کانال، میانگین عمق و عرض کانال، طول کانال، نسبت عرض کانال و نسبت عمق کانال (نسبت به کانال های متصل به آن) به عنوان متغیرهای پیش‌بینی کننده به مدل Maxent وارد شدند. نقشه مطلوبیت زیستگاه پورپویز با میانگین مقدار سطح زیر منحنی 0/887 برای داده‌های آموزشی و 0/832 برای داده‌های تست تولید شد. بر اساس نتایج آزمون جک‌نایف، عمق با منحنی پاسخ S-شکل بیش ترین سهم (50/23 درصد) را در پیش‌بینی زیستگاه‌های مناسب پورپویز داشت. مطلوبیت زیستگاه پورپویز پوزه‌پهن با افزایش عمق و میانگین عمق کانال افزایش یافت حال آن که احتمال حضور این گونه با افزایش شیب، عرض کانال، میانگین عرض کانال و طول کانال روند کاهشی را نشان داد. دو متغیر نسبت عرض کانال و نسبت عمق کانال نیز تاثیری در احتمال حضور پورپویز نشان ندادند. هم چنین وسعتی برابر با 4400 هکتار (معادل 10/6 درصد از کل منطقه) به عنوان زیستگاه‌های مطلوب بر اساس حد آستانه‌ بیشینه مقدار مجموع احتمال شناسایی شد. به صورت کلی، نواحی عمیق خورخوران را می‌توان به عنوان زیستگاه‌های مناسب پورپویز در نظر گرفت. از آن جا که این نواحی درصد کمی از منطقه مورد مطالعه را به خود اختصاص می‌دهند و ماهیگیری تجاری نیز در این نواحی عمیق بیش از نواحی کم عمق منطقه صورت می‌گیرد، لزوم حفاظت بیش تر از نواحی عمیق خور و کاهش تضادهای منتج از بهره‌برداری منابع برای اطمینان از بقای بلندمدت پورپویز در منطقه به شدت احساس می‌شود. بنابراین لازم است تا طرح‌های حفاظت از پورپویز در خورخوران بر نواحی عمیق و تلاش برای کاهش تضاد آن با انسان در آن نواحی متمرکز شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Habitat suitability and the effect of physical parameters on Finless Porpoise (Neophocaena phocaenoides) in the Khorkhoran wetland

نویسندگان [English]

  • Mohammad Mahdi Beiki 1
  • Atefeh Chamani 2
  • Bahareh Lorestani 3
1 Environmental Science Department, Agriculture and Natural Resources Faculty, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 Environmental Science Department, Waste and Wastewater Research Center, Isfahan (Khorasgan)Branch, Islamic Azad University, Isfahan, Iran
3 Department of Environment, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
چکیده [English]

Identification of the marine mammals’ suitable habitats is one of the requirements for coastal ecosystem conservation plans in southern Iran. A total of 42 points of Finless Porpoise (Neophocaena phocaenoides) presence were collected based on direct and random observation from late autumn to late winter of 2021. Depth map was created using a logarithm ratio model with a coefficient of determination of 0.784 and along with bed slope, channel width, average channel depth and width, channel length, channel width ratio and channel depth ratio (relative to the channels connected to it) were submitted into the Maxent model as predictor variables. The porpoise habitat suitability map was produced with an area under the curve of 0.887 for training and 0.832 for test data. According to the results of the Jackknife test, depth with an S-shaped response curve had the largest contribution (50.23%) to predicting suitable habitats of the porpoise. The suitability of the porpoise habitats increased with increasing depth and average channel depth, while the probability of the species' presence decreased with increasing slope, channel width, average channel width and channel length. The two variables of channel width ratio and channel depth ratio had insignificant effects on the probability of the species' presence. Moreover, an area of 4400 ha (10.6% of the total area) was identified as suitable habitat. Since these areas cover a small percentage of the study region and commercial fishing is performed more in such deep areas than the shallow waters, it is important to protect deep waters and reduce the resulting conflicts of interest with humans, thus ensuring the long-term survival of porpoise in the region. Therefore, it is necessary to outline porpoise conservation projects in deep areas and focus on efforts aiming to alleviate conflict with humans.

کلیدواژه‌ها [English]

  • Maxent
  • Marine mammals
  • Bed depth
  • Harra biosphere reserve
  • Neophocaena phocaenoides
  • Khorkhoran wetland
  1. Sprogis, K.R., Christiansen, F., Raudino, H.C., Kobryn, H.T., Wells, R.S. and Bejder, L., 2018. Sex-specific differences in the seasonal habitat use of a coastal dolphin population. Biodiversity and Conservation. 27(14): 3637-2656.
  2. Palmer, K.J., Brookes, K.L., Davies, I.M., Edwards, E. and Rendell, L., 2019. Habitat use of a coastal delphinid population investigated using passive acoustic monitoring. Aquatic Conservation: Marine and Freshwater Ecosystems. 29: 254-270.
  3. Arso Civil, M., Quick, N.J., Cheney, B., Pirotta, E., Thompson, P.M. and Hammond, P.S., 2019. Changing distribution of the east coast of scotland bottlenose dolphin population and the challenges of area‐based management. Aquatic Conservation: Marine and Freshwater Ecosystems. 29: 178-196.
  4. Hupman, K., Stockin, K.A., Pollock, K., Pawley, M.D., Dwyer, S.L. and Lea, C., 2018. Challenges of implementing mark-recapture studies on poorly marked gregarious delphinids. PloS one. 13(7): e0198167.
  5. Lodi, L., Tardin, R. and Maricato, G., 2020. Modeling cetacean habitat use in an urban coastal area in southeastern brazil. Marine Ecology Progress Series. 642: 227-240.
  6. Bortolotto, G.A., Danilewicz, D., Hammond, P.S., Thomas, L. and Zerbini, A.N., 2017. Whale distribution in a breeding area: Spatial models of habitat use and abundance of western south atlantic humpback whales. Marine Ecology Progress Series. 585: 213-227.
  7. Hemami, M.R., Ahmadi, M., Sadegh Saba, M. and Moosavi, S.M.H., 2018. Population estimate and distribution pattern of indian ocean humpback dolphin (Sousa plumbea) in an industrialised bay, northwestern persian gulf. Ecological Indicators. 8(89): 631.
  8. Memarzadeh Kiani, A., Imani Harsini, J. and Karami, M., 2021. Habitat suitability modeling for porcupine (Hystrix indica) by maximum entropy model (maxent) in khojir national park, iran. Journal of Animal Environment. 13(4): 9-18. (In Persian)
  9. Kafash, A., Kaboli, M. and Köhler, G., 2015. Comparison effect of future climatic change on the desert and mountain dwelling reptiles in iran (Paralaudakia caucasia and Saara loricata). Journal of Animal Environment. 7(3): 103-108. (In Persian)
  10. Khosravi, M., Chamani, A. and Mirzaei R., 2021. The impact of climate change on the effectiveness of the conservation network with respect to the bovidae and cervidae family in iran. Journal of Natural Environment. 74(2): 208-223.
  11. Heinrich, S., Genov, T., Fuentes Riquelme, M. and Hammond, P.S., 2019. Fine‐scale habitat partitioning of chilean and peale's dolphins and their overlap with aquaculture. Aquatic Conservation: Marine and Freshwater Ecosystems. 29: 212-226.
  12. Collins, T., Preen, A., Willson, A., Braulik, G. and Baldwin, R., 2005. Finless porpoise (Neophocaena phocaenoides) in waters of arabia, iran and pakistan. International Whaling Commission, Scientific Committee Document SC/57/SM6 Cambridge, UK.
  13. Williams, R., Moore, J.E., Gomez Salazar, C., Trujillo, F. and Burt, L., 2016. Searching for trends in river dolphin abundance: Designing surveys for looming threats, and evidence for opposing trends of two species in the colombian amazon. Biological Conservation. 95: 136-145.
  14. Singh, H. and Rao, R., 2017. Status, threats and conservation challenges to key aquatic fauna (Crocodile and Dolphin) in national chambal sanctuary, india. Aquatic Ecosystem Health & Management. 20(1-2): 59-70.
  15. Mei, Z., Chen, M., Li, Y., Huang, S.L., Haung, J. and Han, Y., 2017. Habitat preference of the yangtze finless porpoise in a minimally disturbed environment. Ecological modelling. 53: 347-353.
  16. Edrén, S.M., Wisz, M.S., Teilmann, J., Dietz, R. and Söderkvist, J., 2010. Modelling spatial patterns in harbour porpoise satellite telemetry data using maximum entropy. Ecography. 33(4): 698-708.
  17. Embling, C.B., Gillibrand, P.A., Gordon, J., Shrimpton, J., Stevick, P.T. and Hammond, P.S., 2010. Using habitat models to identify suitable sites for marine protected areas for harbour porpoises (Phocoena phocoena). Biological Conservation. 143(2): 267-279.
  18. Etezadifar, T.G., Farzaneh, M. and Campus, I., 2008. Breeding of spoonbill in mangrove forests of hara biosphere reserve-qeshm island iran 2008. International Spoonbill Working Group Newsletter. 6: 13.
  19. Shahrakim, M., Saint-Paul, U., Krumme, U. and Fry, B., 2016. Fish use of intertidal mangrove creeks at qeshm island, iran. Marine Ecology Progress Series. 542: 153-166.
  20. Zahed, M.A., Rouhani, F., Mohajeri, S., Bateni, F. and Mohajeri, L., 2010. An overview of iranian mangrove ecosystems, northern part of the persian gulf and oman sea. Acta Ecologica Sinica. 30(4): 240-244.
  21. Yang, F., Zhang, Q., Xu, Y., Jiang, G., Wang, Y. and Wang, D., 2008. Preliminary hazard assessment of polychlorinated biphenyls, polybrominated diphenyl ethers, and polychlorinated dibenzo‐p‐dioxins and dibenzofurans to yangtze finless porpoise in dongting lake, china. Environmental Toxicology and Chemistry: An International Journal. 27(4): 991-996.
  22. Mei, Z., Zhang, X., Huang, S.L., Zhao, X., Hao, Y. and Zhang, L., 2014. The yangtze finless porpoise: On an accelerating path to extinction? Biological Conservation. 172: 117-123.
  23. Zhang, C.I., Park, K.J., Kim, Z.G. and Sohn, H., 2004. Distribution and abundance of finless porpoise (Neophocaena phocaenoides) in the west coast of korea. Journal Korean Fisheries Society. 37(2): 129.
  24. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. and Moore, R., 2017. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment. 202: 18-27.
  25. Kay, S., Hedley, J.D. and Lavender, S., 2009. Sun glint correction of high and low spatial resolution images of aquatic scenes: A review of methods for visible and near infrared wavelengths. Remote sensing. 1(4): 697-730.
  26. Lyzenga, D.R., 1978. Passive remote sensing techniques for mapping water depth and bottom features. Applied optics. 17(3): 379-383.
  27. Shcheglovitova, M. and Anderson, R.P., 2013. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecological Modelling. 269: 9-17.
  28. Peterson, A.T., Papeş, M. and Soberón, J., 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological modelling. 213(1): 63-72.
  29. Preen, A., 2004. Distribution, abundance and conservation status of dugongs and dolphins in the southern and western arabian gulf. Biological Conservation. 118(2): 205-218.
  30. Carlucci, R., Fanizza, C., Cipriano, G., Paoli, C., Russo, T. and Vassallo, P., 2016. Modeling the spatial distribution of the striped dolphin (Stenella coeruleoalba) and common bottlenose dolphin (Tursiops truncatus) in the gulf of taranto (Northern Ionian Sea, Central Eastern Mediterranean Sea). Ecological indicators. 69: 707-721.
  31. Shirakihara, M., Shirakihara, K. and Takemura, A., 1994. Distribution and seasonal density of the finless porpoise neophocaena phocaenoides in the coastal waters of western kyushu, japan. Fisheries Science. 60(1): 41-46.
  32. Liu, X., Mei, Z., Zhang, J., Sun, J., Zhang, N. and Guo, Y., 2022. Seasonal yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) movements in the poyang lake, china: Implications on flexible management for aquatic animals in fluctuating freshwater ecosystems. Science of the Total Environment. 807: 150782.
  33. Li, Y., 2017. Study on the habitat selection, carrying capacity and population viability analysis of the yangtze finless porpoise in tian-e-zhou oxbow-the theory of exsitu conservation.
  34. McCluskey, S.M., Bejder, L. and Loneragan, N.R., 2016. Dolphin prey availability and calorific value in an estuarine and coastal environment. Frontiers in Marine Science. 3: 3.