تاثیرفلزات سنگین ( کادمیوم و سرب) بر رشد، محتوای رنگیزه‌های فتوسنتزی و پروتئین ریزجلبک Isochrysis galbana

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه زیست شناسی دریا، دانشکده علوم وفنون دریا، دانشگاه هرمزگان، بندرعباس، ایران

10.22034/aej.2021.295825.2588

چکیده

فلزات سنگین به علت اثرات سمی در محیط، تجمع زیستی در گونه‌های مختلف آبزیان و ایجاد بزرگ نمایی زیستی در زنجیره‌های غذایی از اهمیت ویژه‌ای برخوردار هستند. مطالعه حاضر با هدف مقایسه سمیت فلزات سنگین کادمیوم و سرب در غلظت‌های مختلف (500، 250، 100، 50، 5 میکروگرم بر لیتر ) بر رشد ریزجلبک Isochrysis galbana در طول 15 روز در محیط کشت F2 مورد مطالعه قرار گرفت. نتایج نشان داد که اثر دو فلزات مورد مطالعه بر رشد I. galbana وابسته به دو فاکتو زمان و غلظت بود. مشاهدات حاکی از این بود که غلظت‌های 500 میکرو گرم بر لیتر از کادمیوم در روز چهارم به طور قابل توجهی باعث مهار رشد I. galbana گردید . بیش ترین میزان رشد در غلظت 5 میکرو گرم بر لیتر به برای هر دو فلز مورد آزمایش به دست آمد. در این آزمایش بیش ترین محتوای کلروفیل a برای فلزات کادمیوم و سرب مربوط به غلظت 5 میکرو گرم بر لیتر و کمترین محتوای کلروفیل مربوط به دو غلظت‌ 250 و 500 میکروگرم بر لیتر بود. هم چنین با مطالعه اثر فلز کادمیوم و سرب بر میزان پروتئین ریز جلبک مشخص گردید که غلظت‌های کم باعث افزایش میزان پروتئین و غلظت‌های بالا باعث کاهش میزان پروتئین ریزجلبک شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of heavy metals (cadmium and lead) on growth, photosynthetic pigment content and Protein microalgae Isochrysis galbana

نویسندگان [English]

  • Zohreh Barkhordari Ahmadi
  • Mohammadreza Taherizadeh
  • Morteza Yousefzadi
Department of marine biology, Faculty of marine science and technology, Universtity of Hormozgan, Bandar Abbas, Iran
چکیده [English]

Heavy metals are especially important because of the toxic effects of the environment, the accumulation of biodiversity in various aquatic species and the creation of biological magnification in food chains. The present study was conducted to compare the toxicity of heavy metals of cadmium and lead in different concentrations (500, 250, 100, 50, 5 μg/L) on microorganism growth of Isochrysis galbana during 15 days in F2 culture media. The results showed that the effect of two metals on growth of I. galbana was dependent on two factors of time and concentration. Observations showed that concentrations of 500 micrograms per liter of cadmium on day 4 significantly inhibited the growth of I. galbana. The highest growth rate was obtained at a concentration of 5 μg/L for both tested metals. In this experiment, the highest content of chlorophyll a for cadmium and lead was 5 g/L and the lowest content of chlorophyll was in two concentrations of 250 and 500 μg/L. Also, by studying the effect of cadmium and lead on the amount of alfalfa protein, low concentrations increased protein levels and high concentrations reduced the amount of microalgae protein.

کلیدواژه‌ها [English]

  • microalgae Isochrysis galbana
  • Cadmium and lead metal
  • growth
  • chlorophyll a
  • protein
  1. Ghrefat, H. and Yusuf, N., 2006. Assessing Mn, Fe, Cu, Zn, and Cd pollution in bottom sediments of Wadi Al-Arab Dam, Jordan. Chemosphere. 65(11): 2114-2121.
  2. Khaled, A., El Nemr, A. and El Sikaily, A., 2006. An assessment of heavy-metal contamination in surface sediments of the Suez Gulf using geoaccumulation indexes and statistical analysis. Chemistry and Ecology. 22(3): 239-252.
  3. Szefer, P., Glasby, G.P., Stüben, D., Kusak, A., Geldon, J., Berner, Z. and Warzocha, J., 1999. Distribution of selected heavy metals and rare earth elements in surficial sediments from the Polish sector of the Vistula Lagoon. Chemosphere. 39(15): 2785-2798.
  4. Junior, M.M., Silva, L.O., Leão, D.J. and Ferreira, S.L., 2014. Analytical strategies for determination of cadmium in Brazilian vinegar samples using ET AAS. Food chemistry. 160: 209-213.
  5. Sunda, W.G., Engel, D.W. and Thuotte, R.M., 1978. Effect of chemical speciation on toxicity of cadmium to grass shrimp, Palaemonetes pugio: importance of free cadmium ion. Environmental Science & Technology. 12(4): 409-413.
  6. Luo, Y. and Hong, A., 1997. Oxidation and dissolution of lead in chlorinated drinking water. Advances in Environmental Research. 1: 84-97.
  7. M., Pourgholami mogaddam, A., Makarami, M. and Khatib Hagigi, S., 2018. Identify and study the density and distribution of Phytoplankton in the Kardeh reservoir in Khorasan Razavi. Journal of Animal Environment. 10(2): 269-276. (In Persian)
  8. Levy, J.L., Stauber, J.L. and Jolley, D.F., 2007. Sensitivity of marine microalgae to copper: the effect of biotic factors on copper adsorption and toxicity. Science of the Total Environment. 387(1-3): 141-154.
  9. Qian, H., Li, J., Sun, L., Chen, W., Sheng, G.D., Liu, W. and Fu, Z., 2009. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquatic toxicology. 94(1): 56-61.
  10. Rai, L.C., Gaur, J.P. and Kumar, H.D., 1981. Phycology and heavy‐metal pollution. Biological Reviews. 56(2): 99-151.
  11. Valko, M.M.H.C.M., Morris, H. and Cronin, M.T.D., 2005. Metals, toxicity and oxidative stress. Current medicinal chemistry. 12(10): 1161-1208.
  12. Pinto, E., Sigaud‐kutner, T.C., Leitao, M.A., Okamoto, O.K., Morse, D. and Colepicolo, P., 2003. Heavy metal–induced oxidative stress in algae 1. Journal of phycology. 39(6): 1008-1018.
  13. Azarm, , Javadzadeh, N. and Jalilzadeh, R., 2020.  Investigation of Chlorella vulgaris capacity in absorption of Nitrate and Phosphate from wastewater of fish farming pool in Khuzestan Province. Journal of Animal Environment. 12(2): 291-298. (In Persian)
  14. Suthers, I.M. and Rissik, D., 2009.Plankton: A guide to their ecology and monitoring for water quality. CSIRO publishing.
  15. Canterford, G.S. and Canterford, D.R., 1980. Toxicity of heavy metals to the marine diatom Ditylum brightwellii (West) Grunow: correlation between toxicity and metal speciation. Journal of the Marine Biological Association of the United Kingdom. 60(1): 227-242.
  16. Ghorbani Vagheaii, R. and Davoudi, R., 2013. Nutrition in aquaculture. Translated by Shams International Publications. 191 p.
  17. Yang, F., Chen, S., Miao, Z., Sheng, Z., Xu, J., Wan, J. and. Yan, X., 2016. The effect of several microalgae isolated from East China Sea on growth and survival rate of postset juveniles of razor clam, Sinonovacula constricta (Lamarck, 1818). Aquaculture Nutrition. 22(4): 846-856.
  18. Liu, W., Pearce, C.M., Alabi, A.O. and Gurney-Smith, H., 2009. Effects of microalgal diets on the growth and survival of larvae and post-larvae of the basket cockle, Clinocardium nuttallii. Aquaculture. 293(3): 248-254.
  19. Pernet, F. and Tremblay, R., 2004. Effect of varying levels of dietary essential fatty acid during early ontogeny of the sea scallop Placopecten magellanicus. Journal of Experimental Marine Biology and Ecology. 310(1): 73-86.
  20. Duque, D., Montoya, C. and Botero, L.R., 2019. Cadmium (Cd) tolerance evaluation of three strains of microalgae of the genus Ankistrodesmus, Chlorella and Scenedesmus. Revista Facultad de Ingeniería, Universidad de Antioquia. 92:60-69. https://doi.org/10.17533/udea.redin.2019052.
  21. Yap, C.K., Ismail, A., Omar, H. and Tan, S.G., 2004. Toxicities and tolerances of Cd, Cu, Pb and Zn in a primary producer (Isochrysis galbana) and in a primary consumer (Perna viridis). Environment International. 29(8): 1097-1104.
  22. Koening, L.M. and Demacedo, J.S., 2004. Urban secondary sewage: an alternative medium for the culture of Tetraselmis chuii (Prasinophyceae) and Dunaliella viridis (Chlorophyceae). Brazilian archives of Biology and Technology, an International journal. 47(3): 451-459.
  23. Jeffrey, S.T. and Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen. 167(2): 191-194.
  24. Bradford, M.M., 1976. 'A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding', Analytical biochemistry. 72: 248-254.
  25. Klaassen, C.D. and Rozman, K.K., 1996. Absorption, distribution, and excretion of toxicants. Toxicology: The Basic Science of Poisons (Klaassen, C.D., Amdur, M.O. and Doull, J., eds). 5th ed. New York: McGraw-Hill. 91-109.
  26. Bencko, V., 1983. Nickel: a review of its occupational and environmental toxicology. Journal of hygiene, epidemiology, microbiology, and immunology. 27(2): 237-247.
  27. Björn, A., Godhea, A., Filipssonc, H.L., Rengeforsb, K. and Berglund, O., 2020. Differences in metal tolerance among strains, populations, and species of marine diatoms- Importance of exponential growth for quantification. Aquatic Toxicology. 226: 1-16.
  28. Ouyang, Y., Higman, J., Thompson, J., O'Toole, T. and Campbell, D., 2002. Characterization and spatial distribution of heavy metals in sediment from Cedar and Ortega rivers subbasin. Journal of Contaminant Hydrology. 54(1-2): 19-35.
  29. Jochem, F.J., 2000. Probing the physiological state of phytoplankton at the single-cell level. Scientia Marina. 64(2): 183-195.
  30. Duan, W., Meng, F., Lin, Y. and Wang, G., 2017. Toxicological effects of phenol on four marine microalgae. Environ. Toxicol. Pharmacol. 52: 170-176.
  31. Nalimova, A.A., Popova, V.V., Tsoglin, L.N. and Pronina, N.A., 2005. The effects of copper and zinc on Spirulina platensis growth and heavy metal accumulation in its cells. Russian Journal of Plant Physiology. 52(2): 229-234.
  32. Bhattacharyya, M.H., Wilson, A.K., Rajan, S.S. and Jonah, M., 2000. Biochemical pathways in cadmium toxicity. Molecular biology and toxicology of metals. 34-74.
  33. William, G.S., 2013. Trace Metal Interactions with Marine Phytoplankton.
  34. Cobbett, C.S., 2000. Phytochelatins and their roles in heavy metal detoxification. Plant physiology. 123(3): 825-832.
  35. Cobbett, C. and Goldsbrough, P., 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annual review of plant biology. 53(1): 159-182.
  36. Rauser, W.E., 1995. Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant physiology. 109(4): 1141.
  37. Vallee, B.L. and Ulmer, D.D., 1972. Biochemical effects of mercury, cadmium, and lead. Annual review of biochemistry. 41(1): 91-128.
  38. Asiandu, A.P. and Wahyudi, A., 2021. Phycoremediation: Heavy Metals Green-Removal by Microalgae and Its Application in Biofuel Production. Journal of Environmental Treatment Techniques. 9(3): 647-656.
  39. Purwaningrum, P., 2016. Upaya mengurangi timbulan sampah plastik di lingkungan. Indonesian Journal of Urban and Environmental Technology. 8(2): 141-147.
  40. Visviki, I. and Rachlin, J.W., 1992. Ultrastructural changes in Dunaliella minuta following acute and chronic exposure to copper and cadmium. Archives of environmental contamination and toxicology. 23(4): 420-425.
  41. Arab Bala Gelini, , Hosseiny, S.A., Ghorbani, R. and  Atashi, S., 2019. The effects Pollution of Lead Heavy Metals contamination on the Antioxidant Activity of microalgae Spirulina platensis. Journal of Utilization and Cultivation of Aquatics. 7(4): 1-8. (In Persian)
  42. Arunakumara, K.K.I.U., Zhang, X. and Song, X., 2008. Bioaccumulation of Pb 2+ and its effects on growth, morphology and pigment contents of Spirulina (Arthrospira) platensis. Journal of Ocean University of 7(4): 397-403.
  43. Muwafq, M. and Bernd, M., 2006. Toxicity of heavy metals on Scenedesmus quadricauda (Turp.)
    de Brébisson in batch cultures (7 p). Environmental Science and Pollution Research. 13: 98-104.
  44. Burzynski, M., 1987. Influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and iron in cucumber seedlings. Acta Physiologiae Plantarum.
  45. Piotrowska-Niczyporuk, A., Bajguz, A., Zambrzycka, E.B. and Godlewska-Zykiewicz, B., 2012. Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris(Chlorophyceae). Plant Physiology and Biochemistry. 52: 52-65.
  46. Sheoran, I.S., Singal, H.R. and Singh, R., 1990. Effect of cadmium and nickel on photosynthesis and the enzymes of the photosynthetic carbon reduction cycle in pigeonpea (Cajanus cajan). Photosynthesis Research. 23(3): 345-351.
  47. Bajguz, A., 2011. Suppression of Chlorella vulgaris growth by cadmium, lead, and copper stress and its restoration by endogenous brassinolide. Archives of environmental contamination and toxicology. 60(3): 406-416.
  48. Singh, P.K. and Tewari, R.K., 2003. Cadmium toxicity induced changes in plant water relations and oxidative metabolism of Brassica juncea plants. Journal of Environmental Biology. 24(1): 107-112.
  49. El-Din, S.M.M. and Abd el-Kareem, M.S., 2020. Effects of copper and cadmium on the protein profile and DNA pattern of marine microalgae Chlorella salina and Nannochloropsis salina. Environmental Processes. 7(1): 189-205.
  50. Jong, L.W., Thien, V.Y., Yong, Y.S., Rodrigues, K.F. and Yong, W.T.L., 2015. Micropropagation and protein profile analysis by SDS-PAGE of Gracilaria changii (Rhodophyta, Solieriaceae). Aquaculture Reports. 1: 10-14.