استفاده از باکتری گرم مثبت حل‌کننده فسفر Bacillus aryabhattai در استخر پرورش ماهیان گرمابی به‌منظور کاهش مصرف کود شیمیایی فسفره

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیلات، دانشکده منابع طبیعی و علوم دریایی، دانشگاه تربیت مدرس، نور، ایران

2 گروه شیلات، دانشکده کشاورزی و منابع طبیعی، موسسه آموزش عالی آزاد خزر، محمودآباد، ایران

10.22034/aej.2021.297440.2591

چکیده

هدف از این تحقیق، بررسی امکان جایگزینی کود شیمیایی سوپرفسفات تریپل با کودهای زیستی به‌عنوان یک رویکرد دوستدار محیط‌زیست بود. اثر کاربرد جداگانه و تلفیقی کود زیستی و شیمیایی در شرایط میکروکازم (ارلن حاوی رسوب) مورد ارزیابی قرار گرفت. بدین منظور، باکتری گرم مثبت حل‌کننده فسفات 3SB.P Bacillus aryabhattai strain در دو سطح تلقیح و عدم تلقیح و کود فسفات در 4 سطح 0، 30، 70 و 100 درصد استفاده شد. در این آزمایش، فسفر محلول،pH و تراکم باکتری‌های حل‌کننده فسفر در زمان های مختلف (در روزهای صفر (قبل از تلقیح)، 2، 5، 10، 15 و 20 روز بعد از تلقیح) مورد سنجش قرار گرفت. نتایج نشان داد که تراکم باکتری در طی آزمایش در همه گروه ها ابتدا دارای یک روند افزایشی سپس کاهشی و مجدداً کمی افزایشی بود. تیمار 6 (70 درصد کود+ باکتری) دارای بیشترین تراکم باکتری بودکه در برخی بازه‌های زمانی اختلاف معنی داری با سایر تیمارها داشت. میزان فسفات محلول آب در همه گروه‌ها ابتدا دارای یک روند افزایشی سپس کاهشی و مجدداً افزایشی بود. در بازه‌های زمانی مختلف، تفاوت معنی داری در میانگین فسفر محلول در تیمارها با شاهد مشاهده نشد. تغییرات pH تیمارها حاکی از روند سینوسی در بازه های مختلف می‌باشد. با وجود این که باکتری‌ها در شرایط میکروکازم به‌خوبی رشد کردند و تثبیت مناسبی در محیط نشان دادند اما نتایج نشان داد که کود شیمیایی و باکتری حل‌کننده فسفر اثر معنی داری بر نوسانات فسفر محلول نداشتند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Use of gram-positive phosphate solubilizing bacterium Bacillus aryabhattai in warm-water fishpond to reduce the application of phosphorus chemical fertilizer

نویسندگان [English]

  • Nemat Mahmoudi 1
  • Mehdi Goli 2
  • Mohammadreza Bivareh 1
  • Mina Jalali 1
  • Rana Dashtbin 1
1 Department of Aquaculture, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Nur, Iran
2 2Department of Fisheries, Faculty of Agriculture and Natural Resources Science, Khazar Institute of Higher Education, Mahmudabad, Iran
چکیده [English]

The aim of this study was to investigate the possibility of replacing Triple superphosphate chemical fertilizer with biofertilizers as an environmentally friendly approach. The effect of separate and combined triple superphosphate and biofertilizer application under microcosm (Erlenmeyer contains sediment) was evaluated. Gram-positive Phosphate solubilizing bacteria Bacillus aryabhattai strain SB.P3 was used in two levels of inoculation and non-inoculation, and phosphate fertilizer in 4 levels of 0, 30, 70 and 100%. In this experiment, soluble phosphorus, pH and density of solvent bacteria were measured at different times (on days zero (before inoculation), 2, 5, 10, 15 and 20 days after inoculation). The results showed that the bacterial density during the experiment in all groups, in first had an increasing trend, then decreased, and again slightly increased. Treatment 6 (70% fertilizer + bacteria) had the highest bacterial density, which in some time periods was significantly different from other treatments. The amount of water soluble phosphate in all groups at first had an increasing trend, then decreased and then increased again. At different time intervals, no significant difference was observed in the mean of dissolved phosphorus in the treatments with the control. Changes in pH of the treatments indicate a sinusoidal trend in different intervals. Although the bacteria grew well under microcosm and showed good stability in the environment, the results showed that chemical fertilizers and phosphate solubilizing bacteria didn't have a significant effect on fluctuations in soluble phosphorus.

کلیدواژه‌ها [English]

  • Phosphate solubilizing bacteria
  • Chemical fertilizers
  • Phosphorus
  • Warm-water fishpond
  • Sustainable aquaculture
  1. Mahmoudi, N., Ahmadi, M.R., Babanezhad, M. and Seyfabadi, J., 2014. Environmental variables and their interaction effects on chlorophyll-a in coastal waters of the southern Caspian Sea: assessment by multiple regression grey models. Aquatic Ecology. 48: 351-
  2. Eslamizadeh, E., Javaheri Baboli, M. and Dehghan Madiseh, S., 2017. Study on Species Composition of Zooplankton Communities in Warm Water Fish Ponds in Dezful. Journal of Animal Environment. 9(2): 251-258. (In Persian)
  3. Azarm, , Javadzadeh, N. and  Jalilzadeh, R., 2020. Investigation of Chlorella vulgaris capacity in absorption of Nitrate and Phosphate from wastewater of fish farming pool in Khuzestan Province. Journal of Animal Environment. 12(2): 291-298. (In Persian)
  4. Boyd, C.E., Wood, C.W. and Thunjai, T., 2002. Aquaculture pond bottom soil quality management. Pond Dynamics /Aquaculture Collaborative Research Support Program, Oregon State University. 363-377.
  5. Armandeh, M., Mahmoudi, N. and Fallah Nosratabad, A.R., 2019. Isolation and identification of phosphate solubilizing bacteria from warm-water fish farms as phosphate biofertilizer candidates. Aquatic Physiology and Biotechnology. 6(4): 121-140. (In Persian)
  6. Jana, B.B., 2007. Distribution pattern and role of phosphate solubilizing bacteria in the enhancement of fertilizer value of rock phosphate in aquaculture ponds: state-of-the-art. In First international meeting on microbial phosphate solubilization. Springer, Dordrecht. 229-238.
  7. Maitra, N., Manna, S.K., Samanta, S., Sarkar, K., Debnath, D., Bandopadhyay, C. and Sharma A.P., 2015. Ecological Significance and Phosphorus Release Potential of Phosphate Solubilizing Bacteria in Freshwater Ecosystems. Hydrobiologia. 745(1): 69-83.
  8. El-Habbasha, S.F., Hozayn, M. and Khalafallah, M.A., 2007. Integration effect between phosphorus levels and bio-fertilizers on quality and quantity yield of faba bean (Vicia faba L.) in newly cultivated sandy soils. Research Journal of Agriculture and Biological Sciences. 3(6): 966-971.
  9. Yosefi, K., Galavi, M., Ramrodi, M. and Mousavi, S.R., 2011. Effect of bio-phosphate and chemical phosphorus fertilizer accompanied with micronutrient foliar application on growth, yield and yield components of maize (Single Cross 704). Australian Journal of Crop Science. 5(2): 175-180.
  10. Behera, B.C., Singdevsachan, S.K., Mishra, R.R., Dutta, S.K. and Thatoi, H.N., 2014. Diversity, Mechanism and Biotechnology of Phosphate Solubilising Microorganism in Mangrove, a Review. Biocatalysis and Agricultural Biotechnology. 3(2): 97-110.
  11. Khan, M.S., Ahmad, E., Zaidi, A. and Oves, M., 2013. Functional aspect of phosphate-solubilizing bacteria: importance in crop production. In Bacteria in agrobiology: Crop productivity. Springer, Berlin, Heidelberg. 237-263.
  12. Radhakrishnan, R., Hashem, A. and Abd Allah, E.F., 2017. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Frontiers in Physiology. 8: 1-14.
  13. Ramlucken, U., Lalloo, R., Roets, Y., Moonsamy, G., van Rensburg, C.J. and Thantsha, M.S., 2020. Advantages of bacillus based probiotics in poultry production. Livestock Science. 241: 1-15.
  14. Yousefipor, M., Lack, Sh. and Payandeh, Kh., 2019. Evaluation of the Combined Effect of Biological and Chemical Phosphorous Fertilizers and Micronutrient on Seed and Protein Yield of Barley (Hordeum vulgare L.). Journal of Crop Ecophysiology. 13(1): 103-120. (In Persian)
  15. Mukhongo, R.W., Tumuhairwe, J.B., Ebanyat, P., AbdelGadir, A.H., Thuita, M. and Masso, C., 2017. Combined application of biofertilizers and inorganic nutrients improves sweet potato yields. Frontiers in Plant Science. 8: 1-17.
  16. Chittapun, S., Limbipichai, S., Amnuaysin, N., Boonkerd, R. and Charoensook, M., 2018. Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: a pot experiment. Journal of Applied Phycology. 30(1): 79-85.
  17. Sahu, S.N. and Jana, B.B., 2000. Enhancement of the fertilizer value of rock phosphate engineered through phosphate-solubilizing bacteria. Ecological Engineering. 15: 27-39.
  18. Hu, X.J., Li, Z.J., Cao, Y.C., Zhang, J., Gong, Y.X. and Yang, Y.F., 2010. Isolation and identification of a phosphate-solubilizing bacterium Pantoea stewartii stewartii g6, and effects of temperature, salinity, and pH on its growth under indoor culture conditions. Aquaculture International. 18(6): 1079-1091.
  19. Arjmand, V., Mahmoudi, N. and Fallah Nusratabad, A., 2019. Isolation, identification and function of bacteria capable of liberating phosphorus from organic compounds of sediments of hydrothermal fish breeding ponds in Mazandaran province. Tarbiat Modares master's thesis, 80 p.
  20. Mpatswenumugabo, J.P.M., Bebora, L.C., Gitao, G.C., Mobegi, V.A., Iraguha, B. and Shumbusho, B., 2019. Assessment of bacterial contamination and milk handling practices along the raw milk market chain in the north-western region of Rwanda. African Journal of Microbiology Research. 13(29): 640-648.
  21. Horvįth, L., Tamas, G. and Seagrave, C., 2008. Carp and Pond Fish Culture: Including Chinese Herbivorous Species, Pike, Tench, Zander, Wels Catfish, Goldfish, African Catfish and Sterlet. 185 p.
  22. Murphy, J. and Riley, J.P., 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta. 27: 31-36.
  23. Chen, J., Lu, S., Zhao, Y., Wang, W. and Huang, M., 2011. Effects of overlying water aeration on phosphorus fractions and alkaline phosphatase activity in surface sediment. Journal of Environmental Sciences. 23(2): 206-211.
  24. Shafiee Adib, Sh., Amini Dehaghi, M. and Modares Sanavi, S.A.M., 2015. The effects of Bio fertilizers and chemical phosphorus fertilizers on quantity and quality yield of John, s wort (Hypericum perforatum). Iranian Journal of Medicinal and Aromatic Plants. 31(1): 1-15. (In Persian)
  25. Ribaudo, C., Zaballa, J.I. and Golluscio, R., 2020. Effect of the phosphorus-solubilizing bacterium Enterobacter Ludwigii on barley growth promotion. American Scientific Research Journal for Engineering, Technology and Sciences. 63(1): 144-157.
  26. Galavi, M., Yosefi, K., Ramrodi, M. and Mousavi, S.R., 2011. Effect of bio-phosphate and chemical phosphorus fertilizer accompanied with foliar application of micronutrients on yield, quality and phosphorus and zinc concentration of maize. Journal of Agricultural Science. 3(4): 22-29.
  27. Collavino, M.M., Sansberro, P.A., Mroginski, L.A. and Aguilar, O.M., 2010. Comparison of in vitro solubilization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to promote Phaseolus vulgaris Biology and Fertility of Soils. 46: 727-738.
  28. Liu, Z., Li, Y.C., Zhang, S., Fu, Y., Fan, X., Patel, J.S. and Zhang, M., 2015. Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Appleid Soil Ecology.  96: 217-224.
  29. Li, H.Z., Bi, Q.F., Yang, K., Zheng, B.X., Pu, Q. and Cui, L., 2019. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by single-cell Raman spectroscopy. Analytical Chemistry. 91(3): 2239-2246.
  30. Wilbanks, B. and Trinh, C.T., 2017. Comprehensive characterization of toxicity of fermentative metabolites on microbial growth. Biotechnology for Biofuels. 10(1): 1-11.
  31. Asea, P.E.A., Kucey, R.M.N. and Stewart, J.W.B., 1988. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biology and Biochemistry. 20(4): 459-464.
  32. Bianco, C. and Defez, R., 2010. Improvement of phosphate solubilization and Medicago plant yield by an indole-3-acetic acid-overproducing strain of Sinorhizobium meliloti. Applied and Environmental Microbiology. 76(14): 4626-4632.