تاثیر جایگزینی پودر ماهی با منابع پروتئین های گیاهی بر عملکرد رشد و فعالیت آنزیم های گوارشی در ماهی باس دریایی آسیایی (Lates calcalifer)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم درمانگاهی، دانشکده دامپزشکی، دانشگاه شهید چمران اهواز، اهواز، ایران

2 قطب بهداشت و بیماری های ماهیان گرمابی، دانشگاه شهید چمران اهواز، اهواز، ایران

3 پژوهشکده آبزی پروری جنوب کشور، موسسه تحقیقات علوم شیلاتی کشور، سازمان تحقیقات، آموزش و ترویج کشاورزی، اهواز، ایران

4 گروه پاتوبیولوژی، دانشکده دامپزشکی، دانشگاه شهید چمران، اهواز، اهواز، ایران

5 گروه علوم پایه، دانشکده دامپزشکی، دانشگاه شهید چمران، اهواز، اهواز، ایران

10.22034/aej.2021.303429.2634

چکیده

هدف از مطالعه حاضر، بررسی تاثیر پروتئین‌های گیاهی بر شاخص‌های رشد، فعالیت آنزیم‌های گوارشی و هم‌چنین معرفی جیره غذایی متناسب با گونه باس دریایی آسیایی پرورشی از نظر کارایی بیولوژیکی می باشد. تعداد 600 قطعه بچه ماهی با وزن متوسط 2/5±54 گرم در 15 مخزن پرورشی (500 لیتری) با تراکم 40 قطعه در هر مخزن توزیع و به مدت 60 روز با جیره های تهیه شده تغذیه شدند. ترکیب پروتئین‌های گیاهی (کنجاله سویا، گلوتن گندم و گلوتن ذرت) بوده و در دو سطح 35 و 70 درصد جهت جایگزینی پودر ماهی استفاده شد و عملکرد رشد و فعالیت آنزیم‌های گوارشی مورد بررسی قرار گرفت. نتایج نشان داد که فاکتور‌های ضریب رشد ویژه، درصد افزایش وزن، ضریب رشد نسبی و افزایش وزن روزانه در تیمار اول (پودر ماهی) و دوم (35 درصد جایگزینی) دارای بهترین عملکرد بوده است. هم چنین جایگزینی 70 درصد پودر ماهی با منابع پروتئین‌های گیاهی منجر به کاهش معنی داری در ضریب رشد ویژه، افزایش وزن روزانه و ضریب رشد نسبی نسبت به تیمار اول (پودر ماهی) شد (0/05>P). نتایج بررسی آنزیم‌های گوارشی بیان داشت که تیمار چهارم (تجاری 1) در فاکتور‌های آلکالین فسفاتاز، لیپاز، آلفا آمیلاز و تیمار دوم (35 درصد جایگزینی) در فعالیت آنزیم ترپسین ، اختلاف معنی داری نسبت به سایر تیمارها داشتند (0/05>P). بر اساس نتایج حاصل ماهی باس دریایی آسیایی به راحتی می‌تواند با جایگزینی 35 درصد پودر ماهی با منابع پروتئین‌های گیاهی عملکرد رشد مناسبی را داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of replacing fish meal with plant protein sources on growth performance and digestive enzymes activity in Asian sea bass (Lates calcalifer)

نویسندگان [English]

  • Hamzeh Mohtashami pour 1
  • Mehrzad Mesbah 1 2
  • Takavar Mohammadian 1 2
  • Mansour Torfi Mozanzadeh 3
  • Anahita Rezaie 4 2
  • Mohamad Reza Tabandeh 5 2
1 Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
2 Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran|Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran
3 Agriculture Research, Education and Extension, South Iran Aquaculture Research Center, Iran Fisheries Science Research Institution Agricultural Research, Education and Promotion Organization, Ahvaz, Iran
4 Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran|Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran
5 Department of Basic Sciences, Faculty of Veterinary Medicine Shahid Chamran University of Ahvaz, Ahvaz, Iran|Excellence Center of Warm Water Fish Health, Shahid Chamran University of Ahvaz, Ahvaz, Iran
چکیده [English]

The aim of this study was to investigate the effect of replacing fish meal with plant protein sources on growth performance, digestive enzymes activity and also introducing a diet suitable for cultured Asian sea bass species in terms of biological efficiency. A total of 600 juveniles with an average weight of 54±2.5 gr were distributed in 15 tanks (500 liters) with a density of 40 pieces in each tank and were fed with prepared diets for 60 days. The composition of plant proteins (soybean meal, wheat gluten and corn gluten) was used at two levels of 35 and 70% to replace fish meal and the growth performance and activity of digestive enzymes were examined.The results showed that T1 (fish meal) and T2 (35% replacement) had the best performance in specific growth factor, weight gain percentage, relative growth rate, weight gain. Also, replacement of 70% fish meal with plant protein sources led to a significant reduction in specific growth rate, daily weight gain and relative growth rate compared to T1 (P<0.05).The results of gastrointestinal enzymes activity showed that the T4 (commercial 1) in alkaline phosphatase, lipase, α-amylase and the T2 in trypsin activity had a significant difference compared to other treatments (P<0.05). It can be inferred that Asian sea bass can easily have good growth performance by replacing 35% fish meal with plant protein sources.

کلیدواژه‌ها [English]

  • Fish meal
  • plant protein
  • replacement
  • growth
  • Asian sea bass
  1. FAO. 2020. The state of world fisheries and aquacultures. SOFIA, Rome, Italy. 150 p.
  2. Zhanga, Y., Chenb, P., Liangb, X.F., Hanc, J., Wub, X.F., Yanga, Y.H. and Xueb, M., 2019. Metabolic disorder induces fatty liver in Japanese seabass, Lateolabrax japonicas fed a full plant protein diet and regulated by cAMP-JNK/NF-kBcaspase signal pathway. Fish and Shellfish Immunology. 90: 223-234. Doi: 10.1016/j.fsi.2019.04.060
  3. Sookying, D., Davis, D.A. and Soller Dias da Silva, F., 2013. A review of the development andapplication of soybean-based diets for Pacific white shrimp Litopenaeus vannamei. Aquac. 19: 441-448.
  4. Katya, K., Park, G., Bharadwaj, A., Browdy, C., Anon, V. and Bai, S.C., 2018. Organic acids blend as dietary antibiotic replacer in marine fish olive flounder, Paralichthys olivaceus. Aquaculture Research. 49(10): 1-8. DOI:1111/are.13749
  5. Hardy, R.W., 2010. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquaculture Research. 41: 770-776.
  6. Tacon, A.G.J. and Metian, M., 2008. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture .285: 146-158
  7. Ibrahem, M.D., Fathi, M., Mesalhy, S. and Abd El-Aty, A.M., 2010. Effect of dietary supplementation of inulin and vitamin C on the growth, hematology, innate immunity, and resistance of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immun. 29: 241-246.
  8. Santigosa, E., Sánchez, J., Médale, F., Kaushik, S., Pérez-Sánchez, J. and Gallardo, M.A., 2008. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein Aquaculture. 282: 68-74.
  9. Torrecillas, S., Robaina, L., Caballero, M.J., Montero, D., Calandra, G., Mompel, D., Karalazos, V., Kaushik, S. and Izquierdo, M.S., 2017. Combined replacement of fishmeal and fish oil in European sea bass (Dicentrarchus labrax): Production performance, tissue composition and liver morphology. Aquaculture. 474: 101-112.
  10. Jalili, R., Agh, N., Noori, F. and Imani, A., 2013. Effects of replacing fish meal and fish oil with plant sources in the diet of rainbow trout (Oncorhynshus mykiss). Journal of Fisheries. 66(2): 119-131. (In Persian)
  11. Larson, H., 1999. Order Perciformes. Suborder Percoidei. Centropomidae. Sea perches. 2429-2432.
  12. Tian, X. and Qin, J.G., 2003. A single phase of food deprivation provoked compensatory growth in barramundi, Lates calcarifer. Aquaculture 224: 169-179.
  13. Thirunavukkarasu, A.R., Abraham, M. and Kailasam, M., 2004. Handbook of seed production and culture of Asian seabass, Lates calcarifer (Bloch), CIBA, Bulletin. 18: 1-58.
  14. Boonyaratpalin, M. and Williams, K., 2002. Asian seabass Lates calcarifer. In: Webster, C.D. and Lim, C., (Eds.), Nutrient requirements and feeding of finfish for Aquaculture, CAB Publishing. 40-50
  15. Mathew, G., 2009. Taxonomy, identification and biology of Seabass (Lates calcarifer). National Training on 'Cage Culture of Seabass' held at CMFRI, Kochi. 14-23 December.
  16. Singh, R.K., 2000. Growth, survival and production of Lates calcarifer in a seasonal rain-fed coastal pond of the Konkan region. Aquaculture. 8: 55-60.
  17. Association of Official Analytical Chemists (AOAC). 2005. Official Methods of Analysis, 18th ed. AOAC international, Gaithersburg, Maryland, USA.
  18. Mohammadian, T., Alishahi, M., Tabandeh, M., Ghorbanpoor, M. and Gharibi, D., 2017. Effect of Lactobacillus plantarum and Lactobacillus delbrueckii bulgaricus ongrowth performance, gut microbial flora and digestive enzymes activities in Tor grypus (Karaman, 1971). Iran. J. Fish. Sci. 16: 296-317.
  19. Bernfeld, P., 1951. Amylases α and β. In methods in enzymology. Vol. 1 (Colowick, P. and Kaplan, N.O., eds). New York: Academic press. 149-157.
  20. Worthington, C.C., 1991. manual related Biochemical. 3th Edition. Freehold, New Jerse. 80-85.
  21. Hummel, B. C., 1959. A modified spectrophotometric determination of chymotrypsin, trypsin, and thrombin. Canadian journal of biochemistry and physiology. 37(12): 1393-1399.
  22. Walter, H.E., 1984. Proteinases: methods with hemoglobin, casein and azocoll as ubstrates. In: Bergmeyer, H.U., Ed. Methods of Enzymatic Analysis. Vol. V. Verlag Chemie, Weinheim. 270-277.
  23. Crane, R.K., Boge, G. and Rigal, A., 1979. Isolation of brush border membranes in vesicular form from the intestinal spiral valve of the small dogfish (Scyliorhinus canicula). Biochimica et Biophysica Acta (BBA)-Biomembranes. 554(1): 264-267.
  24. RungruangsakTorrissen, K., Rustad, A., Sunde, J., Eiane, S.A., Jensen, H.B., Opstvedt, J. and Venturini, G., 2002. In vitro digestibility based on fish crude enzyme extract for prediction of feed quality in growth trials. Journal of the Science of Food and Agriculture. 82(6): 644-654.
  25. Cahu, C.L., Infante, J.Z., Quazuguel, P. and Le Gall, M.M., 1999. Protein hydrolysate vs fish meal in compound diets for 10-day old sea bass (Dicentrarchus labrax) larvae. Aquaculture. 171(1-2): 109-119.
  26. Movahedrad, F., Hajimoradloo, A., Zamani, A. and Kolangi, H., 2017. Effect of dietary fish meal replacement by AquPro (Processed soybean meal) on growth performance and digestive enzymes activity in rainbow trout (Oncorhynchus mykiss) fry. Iranian Scientific Fisheries Journal. 27(2): 47-59. (In Persian)
  27. Haghbayan, S., Shamsaie, M., Eila, N., Abdolahtabar, S.Y., Bozorg Zadeh, P. and Rezaie, D., 2015. Effects of dietary soybean meal (HP310) source on growth performance and blood parameters of rainbow trout (Oncorhynchus mykiss). Journal of Fisheries. 68(2): 209-223. (In Persian)
  28. Wang, P., Zhu, J., Feng, J., He, J., Lou, Y. and Zhou, Q., 2017. Effects of dietary soy protein concentrate meal on growth, immunity, enzyme activity and protein metabolism in relation to gene expression in large yellow croaker (Larimichthys crocea). Aquaculture. 477: 15-22.
  29. Ehsani, J., Azarm, H.M., Maniat, M., Ghabtani, A. and Eskandarnia, H., 2014. Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, body composition and activity of digestive enzymes of juvenile yellowfin sea bream. International Journal of 5: 99-107.
  30. Alboghbeish, M., Mohammadiazarm, H., Yavari, V. and Zakeri, M., 2015. Effect of fish meal replacement by soybean meal and baker’s yeast on growth performance and feed utilization of juvenile Mesopotamichthys sharpeyi Gunther 1874. Journal of Animal Research. 28(2): 136-145. (In Persian)
  31. Ye, J., Liu, X., Wang, Z. and Wang, K., 2001. Effect of partial fish meal replacement by soybean meal on the growth performance and biochemical indices of juvenile Japanese flounder (Paralichthys olivaceus). Aquaculture International. 19: 143-153.
  32. Mamauaga, R.E.P., Koshio, S., Ishikawa, M., Yokoyama, S., Gao, J., Nguyen, B.T. and Ragaza, J.A., 2011. Soy peptide inclusion levels influence the growth performance, proteolytic enzyme activities, blood biochemical parameters and body composition of Japanese flounder, Paralichthys olivaceus. Aquaculture. 321: 252-258.
  33. Sandholm, M., Smith, R.R., Shih, J.C.H. and Scott, M.L., 1976. Determination of antitrypsin activity on agar plates: relationship between antitrypsin and biological value of soybean for trout. Journal of Nutrition. 106: 761-766.
  34. Schofield, P., Mbugua, D.M. and Pell, A.N., 2001. Analysis of condensed tannins: a review. Animal Feed Science and Technology. 91: 21-40.
  35. Krogdahl, A., Bakke-McKellep, A.M. and Baeverfjord, G., 2003. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L). Aquaculture Nutrition. 9: 361-371.
  36. TrejoEscamilla, I., Galaviz, M.A., FloresIbarra, M., Álvarez González, A. and López, L.M., 2017. Replacement of fishmeal by soya protein concentrate in the diets of Totoaba macdonaldi (Gilbert, 1890) juveniles: Effect on the growth performance, in vitro digestibility, digestive enzymes and the haematological and biochemistry parameters. Aquaculture Research. 48(8): 4038-4057.
  37. Lin, S. and Luo, L., 2011. Effects of different levels of soybean meal inclusion in replacement for fish meal on growth, digestive enzymes and transaminase activities in practical diets for juvenile tilapia (Oreochromis niloticus×O. aureus). Animal Feed Science and Technology. 168(1): 80-87.
  38. Robaina, L., Moyano, F.J., Izquierdo, M.S., Socorro, J., Vergara, J.M. and Montero, D., 1997.
    Corn gluten meal and meat and bone meals as protein sources in diets for gilthead seabream
    (Sparus aurata): nutritional and histological implications. Aquaculture. 157: 347-359.
  39. Zaretbar, A., Ouraji, H., Yegane, S. and Keramat, A., 2020. The effects of replacing fish meal with barley protein concentrate on digestive enzyme activity and hepatic enzymes of Caspian salmon (Salmo trutta caspius). Iranian Scientific Fisheries Journal. 28(6): 111-121. (In Persian)
  40. Silva, F.C., Nicoli, J.R., Zambonino-Infante, L., Le Gall, M.M., Kaushik, S. and Gatesoupe, F.J., 2010. Influence of partialsubstitution of dietary fish meal on the activity of digestive enzymes in the intestinal brush border membrane of gilthead sea bream, Sparus aurata and goldfish, Carassius auratus. Aquaculture. 306(1-4): 233-237.
  41. Ahmadi Fard, N., Abedian Kenari, A. and Motamedzadegan, A., 2013. Study of Proteases (Gastric, Intestine and Pancreas) Enzyme Activities of Rainbow Trout, Oncorhynchus mykiss, Fed Partial Substitution of Dietary Fish Meal with Rice Bran Protein Concentrate. Journal of Fisheries (Iranian Journal of Natural Resources). 65(4): 365-376. (In Persian)
  42. Tibaldi, E., Hakim, Y., Uni, Z., Tulli, F., de Francesco, M., Luzzana, U. and Harpaz, S., 2006. Effects of the partial substitution of dietary fish meal by differently processed soybean meals on growth performance, nutrient digestibility and activity of intestinal brush border enzymes in the European sea bass (Dicentrarchus labrax). Aquaculture. 261(1): 182-193.
  43. Farhoudi, A., 2016. The effect of partial replacement of fish meal with Gracilaria pygmaea macroalgae on growth performance, approximate carcass analysis, apparent digestibility and digestive enzymes of Asian seabass. PhD Thesis, Hormozgan University.
  44. Kumar, V., Makkar, H.P.S. and Becker, K., 2011. Detoxified Jatropha curcas kernel meal as a dietary protein source: growth performance, nutrient utilization and digestive enzymes in common carp (Cyprinus carpio L) fingerlings. Aquaculture Nutrition. 17(3) :313- 326.
  45. Palmegiano, G.B., Dapra, F., Forneris, G., Gai, , Gasco, L., Guo, K., Peiretti, P.G., Sicuro, B. and Zoccarato, I., 2006. Rice protein concentrate meal as a potential ingredient in practical diets for rainbow trout (Oncorhynchus mykiss). Aquaculture. 258(1-4): 357-367.