اثرات استفاده از منابع و سطوح مختلف عنصر روی بر خصوصیات لاشه، استخوان درشت نی، وضعیت آنتی اکسیدانی سرم، کیفیت گوشت و سیستم ایمنی جوجه های گوشتی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم دامی، دانشکده کشاورزی، واحد چالوس، دانشگاه آزاد اسلامی، چالوس، ایران

چکیده

آزمایشی به منظور مقایسه منابع و سطوح متفاوت عنصر روی برخصوصیات لاشه، استخوان درشت نی، وضعیت آنتی اکسیدانی سرم، کیفیت گوشت و سیستم ایمنی بر روی 480 قطعه جوجه‌گوشتی در قالب طرح کاملا تصادفی با آرایش فاکتوریل (4×3) با پنج تکرار و 8 جوجه در هر تکرار انجام شد. منابع روی شامل سولفات، اکسید و ترکیب آلی روی-متیونین در سطوح (صفر،60، 120و 180میلی گرم بر کیلوگرم خوراک) بودند. در پایان آزمایش، داده‌ها با رویه‌ GLM نرم افزار SAS و جهت مقایسه میانگین ها از آزمون توکی، با سطح احتمال 95 درصد برای اثرات اصلی (منابع روی و سطوح آن) و اثرات متقابل بین آن‌ها استفاده شد. اثر سطوح مختلف روی بر درصد وزن طحال، پانکراس و بورس فابرسیوس معنی‌دار بود (0/05>P). هم چنین اثر منبع و سطح روی بر میزان مالون دی آلدهید سرم معنی داری بود؛ به طوری‌که تیمار حاوی نمونه آلی روی دارای کم ترین میزان بود و افزایش سطح عنصر روی سبب کاهش معنی دار این مولفه شد. رطوبت گوشت در تیمار حاوی نمونه آلی روی افزایش معنی داری نسبت به تیمار اکسید داشت، هم چنین سطوح بیش تر روی موجب افزایش معنی دار رطوبت گوشت شد (0/05>P). شاخص های ظرفیت نگه داری‌ آب و pH تحت تاثیر منابع و سطوح مختلف روی قرار نگرفتند. مقدار مالون دی آلدهید در گوشت تحت تاثیر تیمارهای آزمایشی قرارگرفت، به گونه ای که استفاده از نمونه آلی روی و هم چنین استفاده از بیش ترین سطح روی در خوراک (180 میلی‌گرم) به طور معنی داری (0/05>P) موجب کاهش غلظت مالون دی آلدهید گوشت پس از کشتار در پرنده ها شد. منابع و سطوح مختلف روی در خوراک تاثیری بر روند تغییرات در پاسخ تیتر ایمنی ایجاد شده علیه گامبرو و برونشیت نداشتند. در سطوح زیاد مصرف روی در خوراک میزان لنفوسیت کاهش و هتروفیل افزایش یافت؛ هم چنین نسبت هتروفیل به لنفوسیت در سطح 180 میلی‌گرم به طور معنی داری بیش تر از سطح 120 میلی‌گرم بود (0/05>P). افزون بر این منابع و سطوح مختلف روی و اثرات متقابل آن ها بر تیتر کلی SRBC نیز غیر معنی دار بود. به طور کلی می توان گفت مستقل از نوع و منبع تامین روی، هر چه سطح روی در جیره جوجه های گوشتی افزایش یابد سبب بهبود ابقاء روی در استخوان درشت نی، بهبود کیفیت و ماندگاری گوشت و افزایش ایمنی در پرنده خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effects of using different sources and levels of zinc in broilers feed on carcass characteristics, tibia, serum antioxidant status, meat quality and immune system of

نویسندگان [English]

  • Rahmatolah Hashemi
  • Mohammad Hossein Palizdar
  • Hamidreza Mohamadian Tabrizi
  • Mahboobeh Rostami Ankasi
Department of Animal Sciences, Faculty of Agriculture, Chalous Branch, Islamic Azad University, Chalous, Iran
چکیده [English]

An experiment to compare different sources and levels of zinc on carcass, tibia, antioxidant status of serum, meat quality and immune system on 480 broilers in a completely randomized design with a factorial arrangement (4 × 3) with five replications and 8 chicks were performed in each replicate. Zinc sources included sulfate, oxide and organic complex of zinc and methionine levels were zero, 60, 120 and 180 mg/kg feed. At the end of the experiment, the data were analyzed using the GLM procedure of SAS software and the Tukey test was used to compare the means with a 95% probability level for the main effects (zinc sources and its levels) and the interactions between them. The effect of different levels of zinc on weight percentage of spleen, pancreas and bursa fabricius was significant (P<0.05). The results showed that the effect of source and level of zinc on serum malondialdehyde was significant; So that the treatment containing organic sample of zinc had the lowest amount of serum malondialdehyde and also increasing the level of zinc application in the diet caused a significant decrease in serum malondialdehyde. Meat moisture in the treatment containing organic zinc sample had a significant increase compared to oxide treatment, also higher levels of zinc caused a significant increase in meat moisture (P<0.05). Water holding capacity and pH indices were not affected by different sources and levels of zinc. As with the results obtained for serum malondialdehyde, the amount of malondialdehyde in meat was affected by experimental treatments so that the use of organic zinc sample as well as the use of the highest level of zinc in the feed (180 mg/kg) significantly (P<0.05) reduced the concentration of malondialdehyde in meat after slaughter of birds. Different sources and levels of zinc in the feed had no effect on the trend of changes in the response of the immune titer against gumbo and bronchitis. At high levels of zinc in the diet, lymphocyte counts decreased and heterophils increased; Also, the ratio of heterophils to lymphocytes at the level of 180 mg/kg was significantly higher than the level of 120 mg/kg (P<0.05). In addition, different sources and levels of zinc and their interactions on the overall SRBC titer were also insignificant.

کلیدواژه‌ها [English]

  • Organic zinc complex
  • broiler
  • antioxidant status
  • meat quality
  • immune system
  1. Hafez, A., Nassef, E., Fahmy, M., Elsabagh, M., Bakr, A. and Hegazi, E., 2020. Impact of dietary nano-zinc oxide on immune response and antioxidant defense of broiler chickens. Environmental Science and Pollution Research. 27(16): 19108-19114. DOI:1007/s11356-019-04344-6
  2. Sahin, K., Smith, M., Onderci, , Sahin, N., Gursu, M. and Kucuk, O., 2005. Supplementation of zinc from organic or inorganic source improves performance and antioxidant status of heat-distressed quail. Poultry Science. 84(6): 882-887. DOI:10.1093/ps/84.6.882
  3. Salim, H., Lee, H., Jo, C., Lee, S. and Lee, B., 2011. Supplementation of graded levels of organic zinc in the diets of female broilers: effects on performance and carcase quality. British Poultry Science. 52(5):606-612. DOI: 1080/00071668.2011.616485
  4. Jahanian Najafabadi, R., Nassiri Moghaddam, H. and Haghparast, A., 2008. The influence of dietary zinc-methionine substitution for zinc sulfate on broiler chick performance. Journal of Biological Science. 8. DOI: 3923/jbs.2008.321.327
  5. Kakhki, R.A.M., Bakhshalinejad, R. and Shafiee, M., 2016. Effect of dietary zinc and α-tocopheryl acetate on broiler performance, immune responses, antioxidant enzyme activities, minerals and vitamin concentration in blood and tissues of broilers. Animal Feed Science and Technology. 221: 12-26. DOI:10.1016/J.ANIFEEDSCI.2016.08.016
  6. Saleh, A.A., Ragab, M.M., Ahmed, E.A., Abudabos, A.M. and Ebeid, T.A., 2018. Effect of dietary zinc-methionine supplementation on growth performance, nutrient utilization, antioxidative properties and immune response in broiler chickens under high ambient temperature. Journal of applied animal research. 46(1): 820-827. DOI:1080/09712119.2017.1407768
  7. Swain, P.S., Rao, S.B., Rajendran, D., Dominic, G. and Selvaraju, S., 2016. Nano zinc, an alternative to conventional zinc as animal feed supplement: A review. Animal Nutrition. 2(3): 134-141. DOI: 1016/j.aninu.2016. 06.003
  8. Lee, S.Y., Nam, S., Choi, Y., Kim, M., Koo, J.S. and Chae, B.J., 2017. Fabrication and characterizations of hot-melt extruded nanocomposites based on zinc sulfate monohydrate and soluplus. Applied Sciences. 7(9): 902. DOI: 3390/app7090902
  9. Zhao, C.Y., Tan, S.X., Xiao, X.Y., Qiu, X.S., Pan, J.Q. and Tang, Z.X., 2014. Effects of dietary zinc oxide nanoparticles on growth performance and antioxidative status in broilers. Biological trace element research. 160(3): 361-367. DOI:10.1007/s12011-014-0052-2
  10. Kumar, A., Hosseindoust, A., Kim, M., Kim, K., Choi, Y. and Lee, S., 2020. Nano-sized zinc in broiler chickens: effects on growth performance, zinc concentration in organs, and intestinal morphology. The journal of poultry science. 0190115. DOI: 2141/jpsa.0190115
  11. Ibrahim, D., Ali, H.A. and El-Mandrawy, S.A., 2017. Effects of different zinc sources on performance, bio distribution of minerals and expression of genes related to metabolism of broiler chickens. Zagazig Veterinary Journal. 45(3): 292-304. DOI: 21608/zvjz.2017.7954
  12. Ao, T., Pierce, J., Power, R., Dawson, K., Pescatore, A. and Cantor, A., 2006. Evaluation of Bioplex Zn as an organic zinc source for chicks. International Journal of Poultry Science. 5(9): 808-811. DOI: 3923/ijps.2006.808.811
  13. Jafari, M., Irani, M. and Rezaeipour, V., 2021. Effect of different dietary zinc sources on the semen quality, testicular histology and sex hormone concentration in broiler breeder roosters. Italian Journal of Animal Science. 20(1): 489-496. DOI:1080/1828051X.2021.1893131
  14. De Grande, A., Leleu, S., Delezie, E., Rapp, C., De Smet, S. and Goossens, E., 2020. Dietary zinc source impacts intestinal morphology and oxidative stress in young broilers. Poultry science. 99(1): 441-453. DOI: 3382/ps/pez525
  15. Barlocco, N., Vadell, A., Ballesteros, F., Galietta, G. and Cozzolino, D., 2006. Predicting intramuscular fat, moisture and Warner-Bratzler shear force in pork muscle using near infrared reflectance spectroscopy. Animal science. 82(1): 111-116. DOI: 1079/ASC20055
  16. Zhang, Z., Jia, G., Zuo, J., Zhang, Y., Lei, J. and Ren, L., 2012. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poultry science. 91(11): 2931-2937. DOI: 3382/ps.2012-02255
  17. Castellini, C., Mugnai, C. and Dal Bosco, A., 2002. Effect of organic production system on broiler carcass and meat quality. Meat science. 60(3): 219-225. DOI: 10.1016/s0309-1740(01)00124-3
  18. Gross, W. and Siegel, H., 1983. Evaluation of the heterophil/lymphocyte ratio as a measure of stress in chickens. Avian diseases. 972-979.
  19. Jung, S., Nam, K.C. and Jo, C., 2016. Detection of malondialdehyde in processed meat products without interference from the ingredients. Food Chemistry. 209: 90-94. DOI:1016/j.foodchem.2016.04.035
  20. Palizdar, M.H., Pourelmi, M., Mohammadian-Tabrizi, H. and Sepehr, Z., 2016. The impact of acidifier in the diet of broiler chickens grown in high stocking densities on growth performance, immune system and blood metabolites. Animal Production. 18(1): 95-106. DOI: 22059/JAP.2016.57147
  21. Hall, L., Shirley, R., Bakalli, R., Aggrey, S., Pesti, G. and Edwards Jr, H., 2003. Power of two methods for the estimation of bone ash of broilers. Poultry Science. 82(3): 414-418. DOI: 10.1093/ps/82.3.414
  22. Horwitz, W., Chichilo, P. and Reynolds, H., 1970. Official methods of analysis of the Association of Official Analytical Chemists. Official methods of analysis of the Association of Official Analytical Chemists. DOI: 1002/jps.2600650148
  23. Ivanišinová, O., Grešáková, Ľ., Ryzner, M., Oceľová, V. and Čobanová, K., 2016. Effects of feed supplementation with various zinc sources on mineral concentration and selected antioxidant indices in tissues and plasma of broiler chickens. Acta Veterinaria Brno. 85(3): 285-291. DOI: 10.2754/avb201685030285
  24. Selim, N., Amira, M., Khosht, A.R. and Abd El-Hakim, A., 2014. Effect of sources and inclusion levels of zinc in broiler diets containing different vegetable oils during summer season conditions on meat quality. International journal of poultry science. 13(11): 619. DOI: 3923/ijps.2014.619.626
  25. Yogesh, K., Deo, C., Shrivastava, H., Mandal, A., Wadhwa, A. and Singh, I., 2013. Growth performance, carcass yield, and immune competence of broiler chickens as influenced by dietary supplemental zinc sources and levels. Agricultural Research. 2(3): 270-274. DOI: 1007/s40003-013-0067-5
  26. Rossi, P., Rutz, F., Anciuti, M., Rech, J, and Zauk, N., 2007. Influence of graded levels of organic zinc on growth performance and carcass traits of broilers. Journal of Applied Poultry Research. 16(2): 219-225. DOI: 1093/japr/16. 2.219
  27. Hess, J., Bilgili, S., Parson, A. and Downs, K., 2001. Influence of complexed zinc products on live performance and carcass grade of broilers. Journal of Applied Animal Research. 19(1): 49-60. DOI: 1080/09712119.2001.9706709
  28. Bilgili, S. and Hess, J., 1995. Placement density influences broiler carcass grade and meat yields. Journal of Applied Poultry Research. 4(4): 3.9-84. DOI:10.1093/JAPR/4.4.384.
  29. Greene, L., Lunt, D., Byers, F., Chirase, N., Richmond, C. and Knutson, R., 1988. Performance and carcass quality of steers supplemented with zinc oxide or zinc methionine. Journal of animal science. 66(7): 1818-1823. DOI: 10.2527/jas1988.6671818x
  30. Malcolm-Callis, K., Duff, G., Gunter, S., Kegley, E. and Vermeire, D., 2000. Effects of supplemental zinc concentration and source on performance, carcass characteristics, and serum values in finishing beef steers. Journal of Animal Science. 78(11):2801-2808. DOI: 10.2527/2000.78112801x
  31. Spears, J. and Kegley, E., 2002. Effect of zinc source (zinc oxide vs zinc proteinate) and level on performance, carcass characteristics, and immune response of growing and finishing steers. Journal of Animal science. 80(10): 2747-2752. DOI: 10.2527/2002.80102747x
  32. Liu, Z., Lu, L., Li, S., Zhang, L., Xi, L. and Zhang, K., 2011. Effects of supplemental zinc source and level on growth performance, carcass traits, and meat quality of broilers. Poultry science. 90(8): 1782-1790. DOI: 10.3382/ps.2010-01215
  33. Liu, Z., Lu, L., Wang, R., Lei, H., Li, S. and Zhang, L., 2015. Effects of supplemental zinc source and level on antioxidant ability and fat metabolism-related enzymes of broilers. Poultry Science. 94(11): 2686-2694. DOI: 10.3382/ps/pev251
  34. Huang, Y., Lu, L., Li, S., Luo, X. and Liu, B., 2009. Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet. Journal of Animal Science. 87(6): 2038-2046. DOI: 10.2527/jas.2008-1212
  35. Huang, Y., Lu, L., Xie, J., Li, S., Li, X. and Liu, S., 2013. Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed diets with low or high phytate content. Animal feed science and technology. 179(1-4): 144-148. DOI: 2527/jas.2008-1212
  36. Yu, Y., Lu, L., Wang, R., Xi, L., Luo, X. and Liu, B., 2010. Effects of zinc source and phytate on zinc absorption by in situ ligated intestinal loops of broilers. Poultry Science. 89(10): 2157-2165. DOI: 10.3382/ps.2009-00486
  37. Gray, J., Gomaa, E. and Buckley, D., 1996. Oxidative quality and shelf life of meats. Meat science. 43: 111-123. DOI: 1016/0309-1740(96)00059-9
  38. Senobar, H., Shams, S.M., Dastar, B. and Zerehdaran, S., 2012. Effect of different levels of organic selenium and vitamin E on performance and meat quality in Japanese quail. 4(1): 8-16. DOI: 22067/IJASR.V4I1.13907
  39. Movahed, P., Oskoueian, E., Faseleh Jahromi, M., Shokr Yazdan, P., Salari Pour, M. andAhmadi, M.R., 2022. Evaluation of replacing organic zinc with inorganic zinc on growth performance, immune system, antioxidant status, morphology of jejunum, and tissue zinc retention in broilers. Journal of Animal Environment. (In Persian) DOI: 22034/AEJ.2021.256119.2403
  40. Yenice, E., Mızrak, C., Gültekin, M., Atik, Z. and Tunca, M., 2015. Effects of organic and inorganic forms of manganese, zinc, copper, and chromium on bioavailability of these minerals and calcium in late-phase laying hens. Biological trace element research. 167(2): 300-307. DOI: 10.1007/s12011-015-0313-8
  41. Sahraei, M., Janmmohamdi, H., Taghizadeh, A. and Cheraghi, S., 2012. Effect of different zinc sources on tibia bone morphology and ash content of broiler chickens. Advances in Biological Research. 6(3): 128-132. DOI: 5829/ idosi.abr.2012.6.3.65146
  42. Ma, W., Niu, H., Feng, J., Wang, Y. and Feng, J., Effects of zinc glycine chelate on oxidative stress, contents of trace elements, and intestinal morphology in broilers. Biological Trace Element Research. 142(3): 546-556. DOI: 10.1007/s12011-010-8824-9
  43. Feng, J., Ma, W., Niu, H., Wu, X. and Wang, Y., 2010. Effects of zinc glycine chelate on growth, hematological, and immunological characteristics in broilers. Biological trace element research. 133(2): 203-211. DOI: 1007/s12011-009-8431-9
  44. Cao, J., Henry, P., Guo, R., Holwerda, R., Toth, J. and Littell, R., 2000. Chemical characteristics and relative bioavailability of supplemental organic zinc sources for poultry and ruminants. Journal of animal science. 78(8): 2039-2054. DOI: 10.2527/2000.7882039x
  45. Świątkiewicz, S., Arczewska-Włosek, A. and Jozefiak, D., 2014. The efficacy of organic minerals in poultry nutrition: review and implications of recent studies. World's Poultry Science Journal. 70(3): 475-486. DOI:1017/S004 3933914000531
  46. Rasooli, V., Salari, S. and Tatar, A., 2018. Effect of organic zinc supplement on performance, immunity responses, cecal microbial population and digestibility of nutrients in broiler chickens reared at high stocking density. Iranian Journal of animal Science. 49(3): 393-404. DOI: 1001.1.20084773.1397.49.3.6.5
  47. Bartlett, J. and Smith, M., 2003. Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poultry science. 82(10): 1580-1588. DOI: 1093/ps/82.10.1580
  48. Hudson, B., Dozier III, W., Fairchild, B., Wilson, J., Sander, J. and Ward, T., 2004. Live performance and immune responses of straight-run broilers: influences of zinc source in broiler breeder hen and progeny diets and ambient temperature during the broiler production period. Journal of applied poultry research. 13(2): 291-301. DOI: 1093/japr/13.2.291
  49. Virden, W., Yeatman, J., Barber, S., Willeford, K., Ward, T. and Fakler, T., 2004. Immune system and cardiac functions of progeny chicks from dams fed diets differing in zinc and manganese level and source. Poultry Science. 83(3): 344-351. DOI: 10.1093/ps/83.3.344
  50. Guo, Y., Yang, R., Yuan, J., Ward, T. and Fakler, T., 2002. Effect of Availa Zn and ZnSO4 on laying hen performance and egg quality. Poult Sci. 81(Suppl 1): 40. DOI: 29252/rap.9.20.27
  51. Khajarern, J., Ratanasethakul, C., Kharajarern, S., Ward, T., Fakler, T. and Johnson, A., 2002. Effect of zinc and manganese amino acid complexes (Availa Z/M) on broiler breeder production and immunity. Poult Sci. 81(Suppl 1): 40.
  52. Mohanna, C. and Nys, Y., 1999. Effect of dietary zinc content and sources on the growth, body zinc deposition and retention, zinc excretion and immune response in chickens. British Poultry Science. 40(1): 108-114. DOI: 1080/00071 669987926
  53. Pimentel, J., Cook, M. and Greger, J., 1991. Immune response of chicks fed various levels of zinc. Poultry science. 70(4): 947-954. DOI: 10.3382/ps.0700947
  54. Yuan, J., Xu, Z., Huang, C., Zhou, S. and Guo, Y., 2011. Effect of dietary Mintrex-Zn/Mn on performance, gene expression of Zn transfer proteins, activities of Zn/Mn related enzymes and fecal mineral excretion in broiler chickens. Animal Feed Science and Technology. 168(1-2): 72-79. DOI: 1016/j.anifeedsci.2011.03.011
  55. Mohammadi, V., Ghazanfari, S., Mohammadi-Sangcheshmeh, A. and Nazaran, M., 2015. Comparative effects of zinc-nano complexes, zinc-sulphate and zinc-methionine on performance in broiler chickens. British poultry science. 56(4): 486-493. DOI: 10.1080/00071668.2015.1064093
  56. Mwangi, S., Timmons, J., Ao, T., Paul, M., Macalintal, L. and Pescatore, A., Effect of zinc imprinting and replacing inorganic zinc with organic zinc on early performance of broiler chicks. Poultry Science. 96(4): 861-868. DOI: 10.3382/ps/pew312
  57. Dibner, J., Richards, J., Kitchell, M. and Quiroz, M., 2007. Metabolic challenges and early bone development. Journal of Applied Poultry Research. 16(1): 126-137. DOI: 1093/japr/16.1.126
  58. Star, L., Van der Klis, J., Rapp, C. and Ward, T., 2012. Bioavailability of organic and inorganic zinc sources in male broilers. Poultry Science. 91(12): 3115-3120. DOI: 10.3382/ps.2012-02314
  59. Vieira, M., Ribeiro, A., Kessler, A., Moraes, M., Kunrath, M. and Ledur, V., 2013. Different sources of dietary zinc for broilers submitted to immunological, nutritional, and environmental challenge. Journal of Applied Poultry Research. 22(4): 855-861.
  60. Bruerton, K.I., 2005. Novel approaches to improving poultry meat production: do organic minerals have a role? Re-defining mineral nutrition. 179-186.
  61. Salim, H., Jo, C. and Lee, B., 2008. Zinc in broiler feeding and nutrition. Avian Biology Research. 1(1): 5-18. DOI: 3184/175815508X334578
  62. Schlegel, P., Nys, Y. and Jondreville, C., 2010. Zinc availability and digestive zinc solubility in piglets and broilers fed diets varying in their phytate contents, phytase activity and supplemented zinc source. Animal. 4(2): 200-209. DOI: 10.1017/S1751731109990978
  63. Windisch, W., 2001. Homeostatic reactions of quantitative Zn metabolism on deficiency and subsequent repletion with Zn in 65Zn-labeled adult rats. Trace Elements and Electrolytes. 18(3):122-128.
  64. Schlegel, P., Sauvant, D. and Jondreville, C., 2013. Bioavailability of zinc sources and their interaction with phytates in broilers and piglets. Animal. 7(1): 47-59. DOI: 10.1017/S1751731112001000
  65. Hasanvand, V. and Yousefvand, N., 2017. Diabetes, Zinc, Garlic flowers, Streptozotocin, Rats. Journal of Animal Environment. 9(3):79-84. (In Persian) DOI: 1001.1.27171388.1396.9.3.11.1