بررسی استفاده از غلظت‌های مزمن ازن بر فاکتورهای رشد و بقا، ترکیبات لاشه وکیفیت آب میگو پا سفید غربی Litopenaeus vannamei

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه شیلات، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران

10.22034/aej.2021.309646.2659

چکیده

مدیریت کیفیت آب دراستخرها، مهم‌ترین عامل در رشد مناسب میگو و دست یافتن به تولید مناسب بیان است که می تواند به بهبود کیفی شرایط حاکم کف استخرها و رسیدن به تولید مورد نظر کمک شایانی نماید. آب با کیفیت نامناسب، باعث بروز استرس و بیماری می‌گردد. امروزه فناوری ازن می‌تواند در مناطقی که دارای ویروس، باکتری، و هم چنین قارچ هستند نیز به کار برده شود. با توجه به پتانسیل بالای اکسیداسیون، ازن اجزای سلولی دیواره سلولی باکتریایی برای کاهش تعداد میکروارگانیسم ها غیر فعال، اکسید می‌کند. دراین تحقیق از غلظت‌های مزمن ازن (0، 0/02 ، 0/04، 0/06 میلی گرم در لیتر ) بر روی میگوی پا سفید غربی به مدت 60 روز به صورت سریالی دو ساعت پس از هر وعده غذایی اعمال شد. در طول آزمایش فاکتورهای کیفیت اندازه گیری شد و در انتها نیز فاکتورهای رشد و آنالیز لاشه انجام گرفت. نتایج نشان داد شوری و دما در حد مطلوب پرورش میگوی پا سفید غربی واقع گردیده است و بین تیمارها اختلاف معنی داری وجود نداشت (0/05<p). با افزایش میزان غلظت ازن بین تیمارها اکسیژن محلول، pH و نیترات افزایش یافته و آمونیاک کل، مواد جامد معلق و نیتریت روند کاهشی پیدا کردند. هم چنین با توجه به آنالیز لاشه بین تیمارها اختلاف معنی داری در سطح پروتئین و خاکستر با روند کاهشی و چربی و رطوبت با روند افزایشی در رابطه با غلظت ازن دیده شد. نتایج حاصل از فاکتورهای رشد وجود اختلاف معنی دار بین سطوح ازن، بیانگر سطح مطلوب عوامل رشد به ترتیب در غلظت های 0/02 و 0/04 بودیم.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of the use of chronic ozone concentrations on growth and survival, Body composition, and water quality of West White leg Shrimp (Litopenaeus vannamei)

نویسندگان [English]

  • Farhad Konyeh
  • Gholamreza Rafiee
  • Kamran Rezaei tavabe
Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
چکیده [English]

Water quality management in culture ponds is the most important factor in the proper growth of shrimp and achieving proper production, which can help to improve the quality of the conditions of the pool floor and achieve the desired production. Poor quality water causes stress and illness. Today, ozone technology can be used in areas with viruses, bacteria, and fungi. Due to the high oxidation potential, ozone oxidizes the cellular components of the bacterial cell wall to reduce the number of inactive microorganisms. In this study, chronic ozone concentrations (0.02, 0.04, 0.06 mg/l) were applied serially to western white-leg shrimp for 60 days two hours after each diet. During the experiment, quality factors were measured, and at the end, growth factors and Body composition were performed. The results showed that salinity and temperature were in the optimal range of western white-leg shrimp and there was no significant difference between treatments (p>0.05). With increasing ozone concentration between treatments, dissolved oxygen, pH and nitrate increased and total ammonia, suspended solids, and nitrite decreased. Also, according to Body composition, there was a significant difference between the treatments in protein and ash levels with a decreasing trend and fat and moisture with an increasing trend concerning ozone concentration. The results of growth factors showed a significant difference between ozone levels, indicating the optimal level of growth factors in concentrations of 0.02 and 0.04, respectively.

کلیدواژه‌ها [English]

  • Ozone
  • West White leg Shrimp
  • Water Quality
  • Growth
  • Body composition
  1. Akbarzadeh, G., Dehghani, R., Mohebbi Nozar, L. and Saraji, F., 2017. Study of Water Quality in the Coastal Waters of Hormozgan Province Using Multivariate Statistical Methods. Oceanography. 7(28) :57-65.
  2. Kuhn, D.D., Lawrence, A.L., Boardman, G.D., Patnaik, S., Marsh, L. and Flick Jr, G.J., 2010. Evaluation of two types of bioflocs derived from biological treatment of fish effluent as feed ingredients for Pacific white shrimp, Litopenaeus vannamei. Aquaculture. 303(1-4): 28-33.
  3. Hargreaves, J.A., 2006. Photosynthetic suspended-growth system in aquaculture. Aquacult. Eng. 34: 344-363.
  4. Lightner, D.V., 2005. Biosecurity in shrimp farming: pathogen exclusion through use of SPF stock and routine surveillance, J. World Aquacult. Soc. 36: 229-248.
  5. De Schryver, P., Crab, R. and Defoirdt, T., 2008. The basics of bio-flocs technology: the added value for aquaculture. Aquaculture. 277: 125-137.
  6. Leynen, M., Duvivier, L., Girboux, P. and Ollevier, F., 1998. Toxicity of ozone to fish larvae and Daphnia magna. Ecotoxicology and Environmental Safety. 41: 176-179.
  7. Tango, M.S. and Gagnon, G.A., 2003. Impact of ozonation on water quality within marine recirculating systems. Aquaculture Engineering. 29: 125-137.
  8. Hoigne, J., Bader, H., Haag, W.R. and Staehelin, J., 1985. Rate constants of reactions of ozone with organic and inorganic compounds in water. III. Inorganic compounds and radicals. Water Res. 19: 993-1004.
  9. Tanaka, J. and Matsumura, M., 2002. Kinetic studies of removal of ammonia from seawater by ozonation. J. Chem. Technol. Biotechnol. 77: 649-656.
  10. Guzel-Seydim, Z.B., Greene, A.K. and Seydim, A.C., 2004. Use of Ozone in the Food Industry Lebensm-Wiss. u.-Technol. Technol. 37: 453-460.
  11. Kowalski, W.J., Bahnfleth, W.P., Striebig, B.A. and Whittam, T.S., 2003. Demonstration of a Hermetic Airborne Ozone Disinfection System’’: Studies on E. coli, AIHA Journal. 64: 222-227.
  12. Prabakaran, M., Tamil Selvi, S., Merinal, S. and Panneerselvam, A., 2012. Effect of ozonation on pathogenic bacteria. Advances in Applied Science Research. 3(1): 299-302.
  13. APHA (American Public Health Association). 1998. Standard Methods for the Examination of Water and Wastewater, twentieth ed. Washington DC. 1193 p.
  14. Parsons, T.R., Maita, Y. and Lalli, C.M., 1984. A manual of chemical and biological methods for seawater analysis, Pergamon Press. 757 p.
  15. Wang, X., Kim, K.W., Bai, S.C., Huh, M.D. and Cho, B.Y., 2003. Effect of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciats). Aquaculture. 215: 203-211.
  16. Tacon, A.G.J., Cody, J.J., Conquest, L.D., Divakaran, S., Forster, I.P. and Decamp, O.E., 2002. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition. 8: 121-139.
  17. AOAC (Association of Official Analytical Chemists). 2000. Official Methods of Analysis AOAC. Washington, DC. 1963 p.
  18. Ponce-Palafox, J., Martinez-Palacios, C.A. and Ross, L.G., 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp Penaeus vannamei, Boone, 1931. Aquaculture. 157: 107-115.
  19. Van Wyk, P. and Scarpa, J., 1999. Water quality requirements and management. In: Van Wyk, P., Davis-Hodgkins, M. and Laramore, R., (eds) Farming marine shrimp in recirculating freshwater systems. Florida Department of Agriculture and Consumer Services, Tallahassee, Florida, 128 p Aquacult Int (2017). 25: 1959–1970.
  20. Furtado, P.S., Poersch, L.H. and Wasielesky, W., 2011. Effect of calcium hydroxide, carbonate and sodium bicarbonate on water quality and zootechnical performance of shrimp Litopenaeus vannamei reared in bio-flocs technology (BFT) systems. Aquaculture. 321: 130-135.
  21. Zhang, K., Pan, L. and Chen, W., 2015. Effect of using sodium bicarbonate to adjust the pH to different levels on water quality, the growth and the immune response of shrimp Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquac Res. doi:10.1111/are.12961.
  22. Summerfelt, S.T., Sharrer, M.J., Tsukuda, S.M. and Gearheart, M., 2009 Process requirements for achieving full-flow disinfection of recirculating water using ozonation and UV irradiation. Aquacultural Engineering. 40: 17-27.
  23. Summerfelt, S.T. and Hochheimer, J.N., 1997. Review of ozone processes and applications as an oxidizing agent in aquaculture, Prog. Fish Cult. 94-105.
  24. Lage Filho, F.A., 2010. Ozone application in water sources: effects of operational parameters and water quality variables on ozone residual profiles and decay rates. Brazilian Journal of Chemical Engineering. 27: 545-554.
  25. Davidson, J., Good, C., Welsh, C. and Summerfelt, S., 2011. The effects of ozone and water exchange rates on water quality and rain- bow trout Oncorhynchus mykiss performance in replicated water recirculating systems. Aquacultural Engineering. 44: 80-96.
  26. Bullock, G.L., Summerfelt, S.T., Noble, A., Weber, A., Durant, M.D. and Hankins, J.A., 1997. Ozonation of a recirculating rainbow trout culture system. I. Effects of bacterial gill disease and heterotrophic bacteria. Aquaculture. 158: 43-55.
  27. Good, C., Davidson, J., Welsh, C., Snekvik, K. and Summerfelt, S., 2011. The effects of ozonation on performance, health and welfare of rainbow trout Oncorhynchus mykiss in low-exchange water recirculation aquaculture systems. Aquacultural 44: 97-102.
  28. Powell, A., Chingombe, P., Lupatsch, I., Lloyd, R. and Shields, R.J., 2015. The effect of ozone on water quality and survival of turbot (Psetta maxima) maintained in a recirculating aquaculture Aquacultural Engineering. 64: 20-24.
  29. Ritar, A.J., Smith, G.G. and Thomas, C.W., 2006. Ozonation of seawater improves the survival of larval southern rock lobster, Jasus edwardsii, in culture from egg to juvenile. Aquaculture. 261: 1014-1025.
  30. Babapour, M. and Rafiee, Gh.R., 2019. The Influence of Serial Ozonation on Water Quality and Growth Performance of Rainbow Trout (Oncorhynchus mykiss) in a Recirculating Culture System. Journal of Fisheries. 71(4): 342-351. (In Persian)
  31. Schroeder, J.P., Croot, P.L., Von Dewitz, B., Waller, U. and Hanel, R., 2011. Potential and limitations of ozone for the removal of ammonia, nitrite, and yellow substances in marine recirculating aquaculture systems. Aquacult. Eng. 45: 35-41.
  32. Brazil, B.L., Summerfelt, S.T. and Libey, G.S., 1996. Application of ozone to recirculating aquaculture systems. In: Libey, G.S. and Timmons, M.B., (Eds.), Successes and Failures in Commercial Recirculating Aquaculture. Conference Proceedings, Northeast Regional Agricultural Engineering Service. Ithaca, NY, July, 1996. 373-389.
  33. Sutterlin, A.M., Courier, C.Y. and Devereaux, T., 1984. A recirculating system using ozone for the culture of Atlantic salmon. Prog. Fish Cult. 46: 239-244.
  34. Rosenthal, H. and Kruner, G., 1985. Treatment efficiency of an improved ozonation unit applied to fish culture situations. Ozone Sci. Eng. 7: 179-190.
  35. Paller, M.H. and Lewis, W.M., 1988. Use of ozone and fluidized bed biofilters for increased ammonia removal and fish loading rates. Prog. Fish Cult. 50: 141-147.
  36. Bablon, G., Bellamy, W.G., Bourbigot, M.M., Daniel, F.B., Dore, M., Erb, F., Gordon, G., Langlais, B., Laplanche, A., Legube, B., Martin, G., Masschelein, W.J., Pacey, G., Reckhow, C. and Ventresque, D.A., 1991. Fundamental aspects. In: Langlais, B., Reckhow, D.A. and Brink, D.R., (Eds.), Ozone in Water Treatment Applications and Engineering. American Water Works Association Research Foundation, Denver, CO. 11-132.
  37. Xian, L., Cyrille, P., Sebastien, T., Ying, L. and Jean Paul, B., 2015. Long -term effects of moderate elevation of oxidation -reduction potential on European seabass (Dicentrarchus labrax) in recirculating aquaculture systems. Aquacultural Engineering. 64: 15-19.
  38. Fukunaga, , Suzuki, T., Arita, M., Suzuki, S., Hara, A. and Yamauchi, K., 1992. Acute toxicity of ozone against morphology of gill and erythrocytes of Japanese charr Salvelinus leucomaenis. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology. 101: 331-336.
  39. Ferreira, L.M., Lara, G. and Wasielesky, W., 2016. Biofilm versus biofloc: are artificial substrates for biofilm production necessary in the BFT system? Aquacult Int. 24(4): 921-930.