تعیین بهترین سطح پاسخ در پارامترهای عملکردی جوجه‌های گوشتی تغذیه شده با سطوح مختلف آفلاتوکسین و اسید‌های آمینه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، دانشکده کشاورزی، دانشگاه زابل، زابل، ایران

2 گروه کشاورزی و تغذیه، دانشگاه آلبرتا، ادمونتون، کانادا

3 گروه پژوهشی شترمرغ، پژوهشکده دام های خاص، پژوهشگاه زابل، زابل، ایران

10.22034/aej.2022.328112.2753

چکیده

آلودگی خوراک یا غذا به آفلاتوکسین B1، متابولیت ثانویه و سمی قارچ‌های آسپرژیلوس فلاووس و آسپرژیلوس پاراسیتوکوس، مشکل عمده اکثر نقاط دنیا، بخصوص کشورهای در حال توسعه می‌باشد. عواقب مضر حضور آفلاتوکسین در مواد غذایی موجب شده تا محققین به دنبال روش‌های ایمن، موثر و کارآمد برای مهار این سم، قبل از ورود به چرخه‌ی غذایی انسان باشند. این تحقیق با هدف بررسی اثرات اسیدهای آمینه گلایسین، گلوتامیک اسید و ان-استیل سیستئین بر عملکرد رشد جوجه‌های گوشتی تحت آفلاتوکسیکوزیس و تعیین سطح مناسب این اسید آمینه‌ها انجام شد. از 680 قطعه جوجه گوشتی راس 308 در 17 گروه آزمایشی با تغذیه 5 سطح متفاوت اسیدهای آمینه گلایسین، گلوتامیک اسید، ان-استیل سیستئین و سم آفلاتوکسین با 4 تکرار و هر تکرار شامل 10 قطعه جوجه استفاده شد. صفات عملکردی شامل مصرف خوراک، افزایش وزن بدن و ضریب تبدیل خوراک بودند که به صورت هفتگی از سن یک تا 21 روزگی اندازه گیری شد. نتایج صفات عملکردی با استفاده از مدل روش‌شناسی سطح پاسخ و با استفاده از طرح مرکب مرکزی مورد تجزیه و تحلیل قرار گرفت. نتایج طرح مرکب مرکزی با مدل رگرسیون درجه دو که دارای بیشترین مقادیر R2 بود تطابق بیشتر و معنی‌داری را در جوجه‌های گوشتی داشت. نتایج مطالعه حاضر اثرات منفی آفلاتوکسین بر صفات مصرف خوراک و افزایش وزن بدن را نشان داد که این خود باعث افزایش ضریب تبدیل خوراک شد. هم چنین نتایج نشان داد که افزودن اسیدآمینه‌های گلایسین، گلوتامیک اسید و ان-استیل سیستئین به جیره موجب تعدیل اثرات منفی آفلاتوکسین شد. مکمل‌سازی جیره با سه اسیدآمینه گلایسین، گلوتامیک اسید و ان-استیل سیستئین به عنوان پیش سازهای اصلی گلوتاتیون می‌توانند از طریق بهبود سیستم آنتی‌اکسیدانی موجب کاهش اثرات منفی آفلاتوکسین بر پارامترهای عملکردی جوجه‌های گوشتی شوند. هم چنین، استفاده از روش‌شناسی سطح پاسخ با فراهم آوردن اطلاعات آماری و گرافیکی مناسب از توانایی بالایی در جهت تشخیص مدل برتر و تعیین سطح بهینه این اسیدهای آمینه در جیره آلوده به آفلاتوکسین برخوردار است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Determining the best response level of performance parameters in broilers fed with different levels of aflatoxins and amino acids

نویسندگان [English]

  • Hadi Pajouhanfar 1
  • Farzad Bagherzadeh Kasmani 1
  • Mehran Mehri 1
  • Mohammad Kamely 2
  • Hadi Faraji Arough 3
1 Department of Animal Science, College of Agriculture, University of Zabol, Zabol, Iran
2 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Canada
3 Department of Ostrich, Special Domestic Animals Institute, Research Institute of Zabol, Zabol, Iran
چکیده [English]

Food or feed contamination with aflatoxin B1, which is a secondary and toxic metabolite of Aspergillus flavus and Aspergillus parasiticus, is a major problem in most parts of the world, especially in developing countries. Harmful consequences of the presence of aflatoxins in food encouraged the researchers to find the safe, effective and efficient procedures to control this toxin prior to entering the human food chains. The aim of this study was to investigate the effects of the amino acids glycine, glutamic acid and N-acetylcysteine on the growth performance of broilers under aflatoxicosis, and to determine optimum level of these amino acids. 690 Ross 308 broilers in 17 experimental groups were fed with feeding 5 different levels of amino acids of glycine, glutamic acid, N-acetylcysteine and Aflatoxin with 4 replications and each replication included 10 chickens. Performance traits including feed intake, body weight gain and feed conversion ratio were measured weekly from one to 21 days of age. The results of performance traits were analyzed using the Response Surface Methodology (RSM) model and the central composite design. The results of the central composite design were more consistent and significant in broiler chickens with the quadratic regression model which had the highest values of R2. The results of the present study showed the negative effects of aflatoxin on feed intake and body weight gain, which in turn increased the feed conversion ratio. The results also showed that supplementation of glycine, glutamic acid, N-acetylcysteine amino acids to the diet moderated the negative effects of aflatoxin B1. Dietary supplementation with three amino acids glycine, glutamic acid and N-acetylcysteine as the main precursors of glutathione can reduce the negative effects of aflatoxin on the performance parameters of broilers by improving the antioxidant system. Also, using the response level methodology by providing appropriate statistical and graphical information has a high ability to identify the superior model and determine the optimal level of these amino acids in the diet contaminated with aflatoxin.

کلیدواژه‌ها [English]

  • Aflatoxin
  • Amino acids
  • Broiler
  • Central Composite Design
  • Growth performance
  1. Wu, K., Jia, S., Zhang, J., Zhang, C., Wang, S., Rajput, S.A., Sun, L. and Qi, D., 2021. Transcriptomics and flow cytometry reveals the cytotoxicity of aflatoxin B1 and aflatoxin M1 in bovine mammary epithelial cells. Ecotoxicology and Environmental Safety. 209: 111823.
  2. Sabran, M.R., Jamaluddin, R. and Ahmad, Z., 2013. A mini review on aflatoxin exposure in Malaysia: past, present and future. Frontiers in Microbiology. 4: 334.
  3. International Agency for Research on Cancer. 2002. Some traditional herbal medicines, some mycotoxins, naphthalene and styrene, World Health Organization. 82: 1-556.
  4. Strosnider, H., Azziz-Baumgartner, E., Banziger, M., Bhat, R.V., Breiman, R., Brune, M.N., Decock, K., Dilley, A., Groopman, J. and Hell, K., 2006. Workgroup report: public health strategies for reducing aflatoxin exposure in developing countries. Environmental Health Perspectives. 114: 1898-1903.
  5. Kabak, B., Dobson, A.D. and Var, I.L., 2006. Strategies to prevent mycotoxin contamination of food and animal feed: a review. Critical Reviews in Food Science and Nutrition. 46: 593-619.
  6. Naiel, M.A., Ismael, N.E. and Shehata, S.A., 2019. Ameliorative effect of diets supplemented with rosemary (Rosmarinus officinalis) on aflatoxin B1 toxicity in terms of the performance, liver histopathology, immunity and antioxidant activity of Nile Tilapia (Oreochromis niloticus). Aquaculture. 511: 734264.
  7. Blachier, F., Boutry, C., Bos, C. and Tome, D., 2009. Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines. The American Journal of Clinical Nutrition. 90(3): 814-821.
  8. Razak, M.A., Begum, P.S., Viswanath, B. and Rajagopal, S., 2017. Multifarious beneficial effect of nonessential amino acid, glycine: a review. Oxidative Medicine and Cellular Longevity. doi: 10.1155/2017/1716701.
  9. Populin, T., Moret, S., Truant, S. and Conte, L.S., 2007. A survey on the presence of free glutamic acid in foodstuffs, with and without added monosodium glutamate. Food Chemistry. 104: 1712-1717.
  10. Cairns, B.E., Dong, X., Mann, M.K., Svensson, P., Sessle, B.J., Arendt-Nielsen, L. and Mcerlane, K.M., 2007. Systemic administration of monosodium glutamate elevates intramuscular glutamate levels and sensitizes rat masseter muscle afferent fibers. Pain. 132: 33-41.
  11. Wu, G., 1998. Intestinal mucosal amino acid catabolism. The Journal of Nutrition. 128: 1249-1252.
  12. Reeds, P.J., Burrin, D.G., Stoll, B., Jahoor, F., Wykes, L., Henry, J. and Frazer, M.E., 1997. Enteral glutamate is the preferential source for mucosal glutathione synthesis in fed piglets. American Journal of Physiology-Endocrinology and Metabolism. 273: E408-E415.
  13. Olubodun, J.O., Zulkifli, I., Farjam, A.S., Hair-Bejo, M. and Kasim, A., 2015. Glutamine and glutamic acid supplementation enhance performance of broiler chickens under the hot and humid tropical condition. Italian Journal of Animal Science. 14: 25-29.
  14. Wu, G., Wu, Z., Dai, Z., Yang, Y., Wang, W., Liu, C., Wang, B., Wang, J. and Yin, Y., 2013. Dietary requirements of “nutritionally non-essential amino acids” by animals and Humans. Amino Acids. 44: 1107-1113.
  15. Wu, G., 2009. Amino acids: metabolism, functions, and nutrition. Amino Acids. 37: 1-17.
  16. Wu, G., 2010. Functional amino acids in growth, reproduction, and health. Advances in Nutrition. 1: 31-37.
  17. Wu, G., 2010. Recent advances in swine amino acid nutrition. Journal of Animal Science and Biotechnology. 1: 118-130.
  18. Lewis, R.M., Godfrey, K.M., Jackson, A.A., Cameron, I.T. and Hanson, M.A., 2005. Low serine hydroxy methyltransferase activity in the human placenta has important implications for fetal glycine supply. The Journal of Clinical Endocrinology & Metabolism. 90: 1594-1598.
  19. De Koning, T.J., Snell, K., Duran, M., Berger, R. and Surtees, R., 2003. L-serine in disease and development. Biochemical Journal. 371: 653-661.
  20. Matilla, B., Mauriz, J., Culebras, J., Gonzalez-Gallego, J. and González, P., 2002. Glycine: a cell-protecting anti-oxidant nutrient. Nutricion hospitalaria. 17: 2-9.
  21. Namroud, N., Shivazad, M. and Zaghari, M., 2008. Effects of fortifying low crude protein diet with crystalline amino acids on performance, blood ammonia level, and excreta characteristics of broiler chicks. Poultry Science. 87: 2250-2258.
  22. Kwon, Y., 2021. Possible beneficial effects of N-acetylcysteine for treatment of triple-negative breast cancer. Antioxidants. 10(2): 169-180.
  23. Moldeus, P., Cotgreave, I.A. and Berggren, M., 1986. Lung protection by a thiol-containing antioxidant: N-acetylcysteine. Respiration. 50: 31-42.
  24. Attia, K.M., Asser, M.H., Tawfeek, F.A. and Basuney, H.A., 2019. Efficacy of N-acetylcysteine and hydrated sodium calcium aluminosilicate to reduce the effects of aflatoxin B1 intoxication in broiler chickens. Alexandria Journal for Veterinary Sciences. 61(2): 18-31.
  25. Reddy, R.V., Taylor, M.J. and Sharma, R.P., 1987. Studies of immune function of CD-1 mice exposed to aflatoxin B1. Toxicology. 3(2): 123-132.
  26. Oguz, H.; Hadimli, H.; Kurtoglu, V. and Erganis, O., 2003. Evaluation of humoral immunity of broilers during chronic aflatoxin (50 and 100 ppb) and clinoptilolite exposure. Revue de Medecine Veterinaire. 154: 483-486.
  27. Chen, X., Naehrer, K. and Applegate, T.J. 2016. Interactive effects of dietary protein concentration and aflatoxin B1 on performance, nutrient digestibility, and gut health in broiler chicks. Poultry Science. 95(6): 1312-1325.
  28. Bas, D. and Boyaci, I.H., 2007. Modeling and optimization I: usability of response surface methodology. Journal of Food Engineering. 78: 836-845.
  29. Fallah, H., Karimi, A., Sadeghi, A. and Behroozi-Khazaei, N., 2020. Modelling and optimizing of calcium and non-phytate phosphorus requirements of male broiler chickens from 1 to 21 days of age using response surface methodology. Animal. 14(8): 1598-1609.
  30. Ahmadi, H. and Golian, A., 2011. Response surface and neural network models for performance of broiler chicks fed diets varying in digestible protein and critical amino acids from 11 to 17 days of age. Poultry Science. 90: 2085-2096.
  31. Ahn, H., 2015. Central composite design for the experiments with replicate runs at factorial and axial points. In Industrial engineering, management science and applications (ed. Gen, M., Kim, K., Huang, X. and Hiroshi, Y.,), Springer, Berlin, Germany. 969-979.
  32. Ghazaghi, M., Mehri, M., Yousef-Elahi, M. and Rokouei, M., 2012. Response surface of dietary energy and protein in Japanese quail from 7 to 14 days of age. Poultry 91: 2958-2962.
  33. Mehri, M., Davarpanah, A. and Mirzaei, H., 2012. Estimation of ideal ratios of methionine and threonine to lysine in starting broiler chicks using response surface methodology. Poultry Science. 91: 771-777.
  34. Moradi, M., Fazlzadehdavil, M., Pirsaheb, M., Mansouri, Y., Khosravi, T. and Sharafi, K., 2016. Response surface methodology (RSM) and its application for optimization of ammonium ions removal from aqueous solutions by pumice as a natural and low-cost adsorbent. Archives of Environmental Protection. 42(2): 33-43.
  35. Montgomery, D.C., 2010. Design and analysis of experiments, with design expert. Wiley Publication.
  36. Wei, D.L. and Jong, S.C., 1986. Production of aflatoxins by strains of the Aspergillus flavus group maintained in ATCC. Mycopathologia. 93(1): 19-24.
  37. Marin, D.E. and Taranu, I., 2012. Overview on aflatoxins and oxidative stress. Toxin Reviews. 31(3-4): 32-43.
  38. Zhang, N.Y., Qi, M., Zhao, L., Zhu, M.K., Guo, J., Liu, J., Gu, C.Q., Rajput, S.A., Krumm, C.S., Qi, D.S. and Sun, L.H., 2016. Curcumin prevents aflatoxin B1 hepatoxicity by inhibition of cytochrome P450 isozymes in chick liver. Toxins. 8(11): 327.
  39. Rauber, R.H., Dilkin, P., Giacomini, L.Z., de Almeida, C.A. and Mallmann, C.A., 2007. Performance of turkey poults fed different doses of aflatoxins in the diet. Poultry Science. 86(8): 1620-1624.
  40. Saif, Y.M., Barnes, H., Glisson, J.R., Fadly, A.M., McDougald, L.R. and Swayne, D.E., 2008. Diseases of poultry. Ames, Iowa: Blackwell Pub Professional. 452-514.
  41. Manaf, M. and Khosravinia, H., 2013. Effects of aflatoxin on the performance of broiler breeders and Its alleviation through herbal mycotoxin Journal of Agricultural Science and Technology. 15: 55-63
  42. Chen, J., Chen, K., Yuan, S., Peng, X., Fang, J., Wang, F., Cui, H., Chen, Z., Yuan, J. and Geng, Y., 2016. Effects of aflatoxin B1 on oxidative stress markers and apoptosis of spleens in broilers. Toxicology and Industrial Health. 32: 278-284.
  43. Bravo, R., Matito, S., Cubero, J., Paredes, S.D., Franco, L., Rivero, M., Rodríguez, A.B. and Barriga, C., 2013. Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age. 35(4): 1277-1285.
  44. Manafi, M., Narayanaswamy, H.D. and Pirany, N., 2009. In vitro binding ability of mycotoxin binder in commercial broiler feed. African Journal of Agricultural Research. 4(2).141-143.
  45. Hedayati, M., Manafi, M., Yari, M. and Mousavipour, S.V., 2014. Commercial broilers exposed to aflatoxin B1: Efficacy of a commercial mycotoxin binder on internal organ weights, biochemical traits and mortality. International Journal of Agriculture and Forestry. 4(5): 351-358.