اثر عصاره مخمر و مخمر اتولیز شده بر قابلیت هضم مواد مغذی، فراسنجه های تخمیری شکمبه، بیان ژن اینترلوکین-6 و تیتر آنتی بادی بر علیه تب برفکی در گاوهای شیرده طی اوایل دوره شیردهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 پژوهشکده کشاورزی هسته ای، پژوهشگاه علوم و فنون هسته ای، کرج، ایران

3 گروه علوم دامی، دانشکده کشاوزی، واحد ورامین-پیشوا، دانشگاه آزاد اسلامی، ورامین، ایران

10.22034/aej.2022.368313.2902

چکیده

این آزمایش به‌‌منظور مطالعه اثرات افزودن دوزهای مختلف عصاره مخمر و مخمر اتولیز شده به جیره گاو شیرده بر مقدار خوراک مصرفی، فرآورده‌های تخمیری شکمبه، فراسنجه‌های خونی-ایمنی، بیان ژن‌ اینترلوکین-6 و تیتر آنتی بادی بر علیه تب برفکی انجام شد.
تعداد 25 رأس گاو شیرده در اوایل دوره شیردهی در قالب طرح کاملاً تصادفی به پنج گروه آزمایشی و پنج تکرار تقسیم شدند. جیره های آزمایشی شامل 1) جیره پایه (گروه شاهد)، 2) جیره پایه + 20 گرم در روز عصاره مخمر، 3) جیره پایه + 40 گرم در روز عصاره مخمر، 4) جیره پایه + 20 گرم در روز مخمر اتولیز شده، و 5) جیره پایه + 40 گرم در روز مخمر اتولیز شده بود. از محتویات شکمبه گاو در انتهای دوره آزمایش نمونه‌گیری و فرآورده‌های تخمیری شکمبه اندازه‌گیری شد. در هفته پنجم آزمایش به منظور کنترل بیماری تب برفکی به گاوها واکسن تزریق شد. هفت هفته بعد از شروع آزمایش نمونه‌گیری خون انجام شد و سنجش فراسنجه‌های خونی، مقدار تیتر آنتی بادی بر علیه ویروس تب برفکی و آنالیز بیان ژن اینترلوکین 6 انجام شد. گاوهای دریافت کننده عصاره مخمر و مخمر اتولیز شده در هر دو سطح نسبت به گروه شاهد مصرف روزانه ماده خشک بیش تری داشتند (0/05>P). مخمر اتولیز شده و عصاره مخمر تأثیری بر مقدار تولید شیر روزانه گاوها نداشت (0/05<P). گاوهای دریافت کننده مخمر اتولیز شده نسبت به گروه شاهد مقدار تیتر آنتی بادی بر علیه ویروس تب برفکی بیش تری داشتند (0/05>P)، ولی گاوهای دریافت کننده عصاره مخمر در مقدار تیتر آنتی بادی با گروه شاهد تفاوت معنی‌دار نداشتند (0/05<P). تیمارهای مخمر اتولیز شده بر غلظت اسیدهای چرب فرار شکمبه تاثیری نداشتند (0/05<P)، ولی عصاره مخمر سبب افزایش تولید کل اسیدهای چرب فرار، کاهش مقدار استات و افزایش تولید پروپیونات در شکمبه شد (0/05>P). بیش ترین افزایش بیان نسبی ژن‌ اینترلوکین-6 مربوط به گاوهای دریافت‌کننده مخمر اتولیز شده بود. استفاده از 40 گرم در روز مخمر اتولیز شده می‌تواند سبب بهبود سیستم ایمنی و 40 گرم در روز عصاره مخمر می تواند سبب بهبود شرایط تخمیر و تولید فراسنجه های تخمیری شکمبه گاوهای شیرده شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of yeast extract and autolyzed yeast on nutrient digestibility, ruminal fermentation parameters, IL-6 gene expression and antibody titers against foot-and-mouth disease in early lactating dairy cows

نویسندگان [English]

  • Sogol Adili 1
  • Ali Asghar Sadeghi 1
  • Mohammad Chamani 1
  • Parvin Shawrang 2
  • Farhad Foroudi 3
1 Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
3 Department of Animal Science, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
چکیده [English]

This study was done to evaluate the effects of dietary addition of yeast extract and autolysed yeast on feed intake, ruminal fermentation parameters, IL-6 gene expression and antibody titers in early lactating dairy cows.  Twenty five lactating cows were divided into five experimental groups and five replicates in a completely random design. Experimental diets include basal diet (control group), basal diet + 20 g/d yeast extract, basal diet + 40 g/d yeast extract, basal diet + 20 g/d autolyzed yeast, and basal diet + 40 g/d autolyzed yeast. At the end of the experiment period, ruminal content samples were taken and fermentation products were measured. In the fifth week of the experiment, the cows were injected with a vaccine of foot-and-mouth disease. On weeks 7, blood sampling was taken and chemical components, antibody titer against foot-and-mouth disease virus and interleukin-6 gene expression were analyzed. Cows receiving yeast extract and autolyzed yeast at both levels had more dry matter intake than the control group (P<0.05). Autolyzed yeast and yeast extract had no effect on the daily milk production (P>0.05). Cows receiving autolyzed yeast had higher antibody titer against foot-and mouth-virus than the control group (P<0.05), but cows receiving yeast extract had no significant difference in antibody titer with the control group (P<0.05). Autolyzed yeast had no effect on concentration of volatile fatty acids (P>0.05), but yeast extract increased concentration of volatile fatty acids. Yeast extract decreased the molar percentage of acetate and butyrate and increased the molar percentage of propionate (P<0.05). Autolyzed yeast increased the relative expression of interleukin-6 gene. The highest increase in the relative expression of the interleukin-6 gene was observed in cows receiving autolyzed yeast. Based on the results of this study, autolyzed yeast at 40 g/d can improve the immune system, and yeast extract at 40 g/d can improve fermentation conditions in the rumen of dairy cows.

کلیدواژه‌ها [English]

  • Acetate
  • Autolyzed yeast
  • Dairy cow
  • Interleukin-6
  • Propionate
  1. Burdick-Sanchez, N.C., Randel, R.D., Carroll, J.A. and Welsh, T.H., 2011. Interactions between temperament, stress, and immune function in cattle. Int J Zool. 20(1): 19-25.
  2. Arslan, C. and Tufan, T., 2009. Feeding the transition dairy cow I. Physiologic, hormonal, metabolic and immunogical changes and nutrient requirement of dairy cow during this period. Kafkas Univ Vet Fak Derg. 16(1): 151-158.
  3. Redfern, E.A., Sinclair, L.A. and Robinson, P.A., 2021. Dairy cow health and management in the transition period: The need to understand the human dimension. Res Vet Sci. 137: 94-101.
  4. Burdick-Sanchez, N.C., Young, T.R., Carroll, J.A., Corley, J.R., Rathmann, R.J. and Johnson, B.J., 2013. Yeast cell wall supplementation alters aspects of the physiological and acute phase responses of crossbred heifers to an endotoxin challenge. Innate Immun. 19: 411-419.
  5. Burdick-Sanchez, N.C., Young, T.R., Carroll, J.A., Corley, J.R., Rathmann, R.J. and Johnson, B.J., 2014. Yeast cell wall supplementation alters the metabolic responses of crossbred heifers to an endotoxin challenge. Innate Immun. 20: 104-112.
  6. Wankhade, P.R., Manimaran, A., Kumaresan, A., Jeyakumar, S., Ramesha, K.P., Sejian, V., Rajendran, D. and Varghese, M.R., 2017. Metabolic and immunological changes in transition dairy cows: A review. Vet World. 10: 1367-1377.
  7. Williams, D.L., Mueller, A. and Browder, W., 1996. Glucan-based macrophage stimulators. Clin Immunother. 5: 392-399.
  8. Xiao, Z., Trincado, C.A. and Murtaugh, M.P., 2014. β-glucan enhancement of t cell IFNγ response in swine. Vet. Immunol. Immunopathol. 102: 315-320.
  9. Nasiri, K., Sadeghi, A.A., Nikkhah, A. and Chamani, M., 2018. Effects of live and hydrolyzed yeast supplementation during transition period on blood IgG content and INF-γ gene expression in dairy cows. J Livestock Sci. 9: 65-69.
  10. Franklin, S.T., Newman, M.C., Newman, K.E. and Meek, K.I., 2015. Immune parameters of dry cows fed mannan oligosaccharide and subsequent transfer of immunity to calves. J Dairy Sci. 88: 766-775.
  11. Yalçın, S.S., Aydın Şahin, H.M., Duyum, A.Ç. and Gümüş, H., 2015. Effects of dietary inactive yeast and live yeast on performance, egg quality traits, some blood parameters and antibody production to SRBC of laying hens. Kafkas Univ Vet Fak Derg. 21: 345-350.
  12. Adili, S., Sadeghi, A.A., Chamani, M., Shawrang, P. and Forodi, F., 2020. Hydrolysed yeast and yeast extract effects on dry matter intake, blood cells count, IgG titer and gene expression of IL-2 in lactating dairy cows under heat stress. Acta Sci Anim Sci. 42: e48425.
  13. Aung, M., Ohtsuka, H. and Izumi, K., 2019. Effect of yeast cell wall supplementation on production performances and blood biochemical indices of dairy cows in different lactation periods. Vet World. 12(6): 796-801.
  14. Callaway, E.S. and Martin, S.A., 1997. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose. J Dairy Sci. 80: 2895-2903.
  15. Dias, L.G., Freitas, J.A., Micai, B., Azevedo, R.A., Greco, L.F. and Santos, J.E.P., 2018. Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. J Dairy Sci. 101: 201-221.
  16. Putnam, E., Schwab, C.G., Socha, M.T., Whitehouse, N.L., Kierstead, N.A. and Garthwaite, B.D., 1997. Effect of yeast culture in the diets of early lactation dairy cows on ruminal fermentation and passage of nitrogen fractions and amino acids to the small intestine. J Dairy Sci. 80: 374-384.
  17. Van Amburgh, , Chase, L., Overton, T., Ross, D., Recktenwald, E., Higgs, R. and Tylutki, T., 2010. Updates to the Cornell Net Carbohydrate and Protein System v6. 1 and implications for ration formulation. Proc. Cornell Nutr. Conf., Dept. Anim. Sci., Cornell Univ., Ithaca, NY.
  18. Association of Official Analytical Chemisty (AOAC). 1995. Official methods of analysis.’ 16th AOAC International: Arlington, VA, USA.
  19. Van Keulen, and Young, B.A., 1977. Evaluation of Acid-Insoluble Ash as a Natural Marker in Ruminant Digestibility Studies. J Anim Sci. 44: 282-287.
  20. Ferreira, , Richardson, E.S., Teets, C.L. and Akay, V., 2019. Production performance and nutrient digestibility of lactating dairy cows fed low-forage diets with and without the addition of a live-yeast supplement. J Dairy Sci, 102: 6174-6179.
  21. van Soest, J., Robertson, J.B. and Lewis, B.A., 1991. Methods of dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci. 74: 3583-3597.
  22. Fenner, H., 1965. Method for determining total volatile bases in rumen fluid by steam distillation. J Dairy Sci. 48: 249-251.
  23. Voller, , Bidwell, D. and Bartlett, A., 1976. Microplate enzyme immunoassay for the immunodignosis of virus infection. Manual of clinical immunology. Am Soc Microbiol. 17: 506-512.
  24. Gonzalez, D.D., Rimondi, A., Perez Aguirreburualde, M.S., Mozgovoj, M., Bellido, D., Wigdorovitz, A. and Dus Santos, M.J., 2013. Quantitation of cytokine gene expression by real time PCR in bovine milk and colostrum cells from cows immunized with a bovine rotavirus VP6 experimental vaccine. Res Vet Sci. 95(2): 703-708.
  25.  SAS. 1999. Statistical Analysis System user’s guide (6th edition). SAS Institute Inc., Raleigh, North Carolina, USA.
  26. Steel, R.G.D. and Torrie, J.H., 1980. Principles and procedures of statistics. A biometrical approach, 2nd Edition, McGraw-Hill Book Company, New York.
  27. Kröger, I., Humer, E., Neubauer, V., Reisinger, N. and Zebeli, Q., 2017. Modulation of chewing behavior and reticular pH in nonlactating cows challenged with concentrate-rich diets supplemented with phytogenic compounds and autolyzed yeast. J Dairy Sci. 100: 9702-9714.
  28. Salinas-Chavira, J., Montano, M.F., Torrentera, N. and Zinn, R.A., 2018. Influence of feeding enzymatically hydrolysed yeast cell wall + yeast culture on growth performance of calf-fed Holstein steers. J Appl Anim Res. 46: 327-330.
  29. Piva, G., Belladanna, S., Fusconi, G. and Sicbaldi, F., 1993. Effects of yeast on dairy cow performance, ruminal fermentation, blood components and milk manufacturing properties. J Dairy Sci. 76: 2717-2722.
  30. Bagheri, , Ghorbani, G.R., Rahmani, H.R., Khorvash, M., Nili, N. and Südekum, K.H., 2009. Effect of live yeast and mannan-oligosaccharides on performance of early-lactation Holstein dairy cows. Asian-Aust J Anim Sci. 22: 812-818.
  31. Sallam, M.A., Abdelmalek, M.L.R., Kholif, A.E., Zahran, S.M., Ahmed, M.H., Zeweil, H.S., Attia, M.F.A., Matloup, O.H. and Olafadehan, O.A., 2020. The effect of Saccharomyces cerevisiae live cells and Aspergillus oryzae fermentation extract on the lactational performance of dairy cows. Anim Biotechnol. 31: 491-497.
  32. Molist, F., van Eerden, E., Parmentier, H.K. and Vuorenmaa, J., 2014. Effects of inclusion ofhydrolyzed yeast on the immune response and performance of piglets after weaning. Anim Feed Sci Technol. 195: 136-141.
  33. Marden, J.P., Julien, C., Monteils, V., Auclair, E., Moncoulon, R. and Bayourthe, C., 2008. How does live yeast differ from sodium bicarbonate to stabilize ruminal pH in high-yielding dairy cows? J Dairy Sci. 91: 3528-3535.
  34. Chaucheyras-Durand, F., Ameilbonne, A., Bichat, A., Mosoni, P., Ossa, F. and Forano, E., 2016. Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonization by fibrolytic bacteria and fungi. J Appl Microbiol. 120: 560-570.
  35. Wohlt, J.E., Corcione, T.T. and Zajac, P.K., 1998. Effect of yeast on feed intake and performance of cows fed diets based on corn silage during early lactation. J Dairy Sci.; 81: 1345-52.
  36. Ametaj, B.N., Emmanuel, D.G.V., Zebeli, Q. and Dunn, S.M., 2009. Feeding high proportions of barley grain in a total mixed ration perturbs diurnal patterns of plasma metabolites in lactating dairy cows. J Dairy Sci. 92: 1084-1091.
  37. Thrune, M., Bach, A., Ruiz-Moreno, M., Stern, M. and Linn, J., 2009. Effects of saccharomyces cerevisiae culture on ruminal pH and microbial fermentation in dairy cows: Yeast supplementation on rumen fermentation. Livest Sci. 124: 261-265.
  38. Nasiri, K., Sadeghi, A.A., Nikkhah, A. and Chamani, M., 2022. Effects of live and autolyzed yeast supplementation during transition period on ruminal fermentation, blood attributes, and immune response in dairy cows under heat stress condition. Anim Biotechnol. 27: 1-9.
  39. Ganner, A. and Schatzmayr, G., 2012. Capability of yeast derivatives to adhere enteropathogenic bacteria and to modulate cells of the innate immune system. Appl Microbiol Biotechnol. 95 (2): 289-297.
  40. Eicher, S., McKee, C., Carroll, J. and Pajor, E., 2006. Supplemental vitamin C and yeast cell wall ß-glucan as growth enhancers in newborn pigs and as immunomodulators after an endotoxin challenge after weaning. J Anim Sci. 84: 2352-2360.
  41. Marques, A., Dhont, J., Sorgeloos, P. and Bossier, P., 2006. Immunostimulatory nature of ß- glucans and baker's yeast in gnotobiotic Artemia challenge tests. Fish Shellfish Immunol. 20 (5): 682-692.
  42. Jensen, G.S., Patterson, K.M. and Yoon, I., 2008. Yeast culture has anti-inflammatory effects and specifically activates NK cells. Compar. Immun Micro Infect Dis. 31: 487-500.