تاثیر هم زمان شدت و دوره نوری بر تکامل فعالیت آنزیم های گوارشی لارو تاس ماهی ایرانی (Acipenser persicus)

نوع مقاله : فیزیولوژی (جانوری)

نویسندگان

1 گروه بیولوژی و تکثیر و پرورش آبزیان، پژوهشکده آرتمیا و آبزی پروری، دانشگاه ارومیه. ارومیه، ایران. صندوق پستی: 57135165

2 مؤسسه تحقیقات بین‌المللی تاس‌ماهیان دریای خزر، سازمان تحقیقات، آموزش و ترویج کشاورزی، رشت، ایران. صندوق پستی: 416353464

چکیده

در تحقیق حاضر تاثیر دوره­ های نوری مختلف و شدت نور بر فعالیت آنزیم­ های گوارشی (پپسین، تریپسین، کموتریپسین، لیپاز، آمیلاز و آلکالین فسفاتاز) لارو تاس­ ماهی ایرانی (Acipenser persicus ) پس از تخم­ گشایی تا جذب کامل کیسه زرده مورد ارزیابی قرار گرفت. لاروهای تازه تفریخ شده تاس ­ماهی ایرانی (قره­برون) به ­ترتیب با میانگین وزنی و طولی 0/08±23/19میلی ­گرم و 0/03±35/11 میلی­ متر تحت شش تیمار با دوره­ های مختلف روشنایی و تاریکی L00D:24، D12L:12،D 00L:24 و در سه شدت نور 50، 150 و 300 لوکس به­ جز تیمار تاریکی کامل که فقط دارای یک شدت نور 10-0 لوکس بود، قرار گرفتند. در طول مدت پروژه لاروها در شرایط پرورشی یکسان (pH، دما، دبی آب و میزان تغذیه) قرار داشتند. نتایج حاصله نشان داد که فعالیت پپسین و تریپسین در روز نهم پس از تخم ­گشایی (dph) به ­ترتیب در تیمار 5 با شدت نور 150 لوکس و 12 ساعت روشنایی و تیمار 2 در 24 روشنایی و 150 لوکس بیش ­ترین میزان را دارا بود و به ­صورت معنی­ داری بالاتر از تیمار شاهد بود. فعالیت آنزیم آلکالین فسفاتاز در تیمار 2 و آمیلاز و کموتریپسین به ­ترتیب در دوره نوری L12 وL 24 و شدت نور 300 لوکس از فعالیت بیش ­تری برخوردار بود ولی با تیمار شاهد اختلاف معنی ­داری نداشتند. نتایج این تحقیق نشان داد نور فاکتور مهمی در مراحل اولیه تکامل سیستم گوارش ماهی قره­ برون به­ شمار می ­رود. هم ­چنین اغلب آنزیم ­های گوارشی تحت دوره نوری 12 ساعت و شدت نور بین 150 تا 300 لوکس فعالیت بیش ­تری از خود نشان دادند.

کلیدواژه‌ها


عنوان مقاله [English]

The impact of light intensity and photoperiod on ontogeny of digestive enzymes activity of Persian sturgeon (Acipenser persicus Borodin, 1897)

نویسندگان [English]

  • Farzaneh Noori 1
  • Rezvanolah Kazemi 2
  • Elaheh Hasan Nataj Niazi 1
1 Department of Biology and Aquaculture, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
2 Agriculture Research, Education and Extension Organization (AREEO), International Sturgeon Research Institute, Rasht, Iran
چکیده [English]

In the present study the impact of different photoperiod and light intensity on digestive enzymes activity (pepsin, trypsin, chymotrypsin, lipase, amylase and alkaline phosphatase) of Persian sturgeon (Acipenser persicus) from hatching until complete absorption of yolk sac were monitored. The newly hatched Persian sturgeon larvae with average weight and length of 19.23 ± 0.08 mg and 11.35 ± 0.03 mm respectively were treated with 3 photoperiods (24L, 12L, 24D) and 3 light intensities (50, 150 and 300 lux). The light intensity for 24D was 0-10 lux. The larvae in different treatments were cultured under similar experimental conditions (pH, temperature, water flow and feeding rate). The results demonstrated significantly higher activity of pepsin and trypsin at 9 days post hatch (dph) in treatment 2 (12L-150 lux light intensity) and in treatment 5 (24L-150 lux light intensity) compared to control respectively.  The alkaline phosphatase was higher in treatment 2 whereas amylase and chymotrypsin exhibited higher activity under 12L-300 lux, however showed no significant difference with control. In conclusion the results of this study indicated that light is an important physical factors in ontogeny of Persian sturgeon digestive system during early larval stages. Moreover most of the enzymes showed higher activity under 12L and 150 and 300 lux light intensity.

کلیدواژه‌ها [English]

  • Persian sturgeon larvae
  • Ontogeny
  • light intensity
  • Photoperiod
  • Digestive enzymes
  1. کهنه ­شهری، م. و تاکامی، م.، 1353. تکثیر مصنوعی و پرورش ماهیان خاویاری. انتشارات دانشگاه تهران. 296 صفحه.
  2. نوری، ف.؛ بهمنی، م. و پورعلی ح.ر.، 1394. گزارش نهایی طرح تاثیر دوره­ های نوری بر شاخص ­های رشد و آنتوژنی آنزیم ­های گوارشی تاس ­ماهی شیپ. دانشگاه ارومیه، پژوهشکده آرتمیا و آبزی ­پروری.
  3. یگانه، س.؛ رمضان ­زاده، ف.؛ جانی ­خلیلی، خ. و بابایی، س.ص.، 1393. بررسی اثرات طول دوره نوری بر فعالیت برخی آنزیم ­های گوارشی معده ­ای و روده ­ای در لارو و نوجوان قزل ­آلای رنگین­ کمان (Oncorhynchus mykiss)، مجله علمی شیلات. سال 23، شماره 2.
  4. Agh, N.; Noori, F.; Irani, A.; Van Stappen G. and Sorgeloos, P., 2011. Fine tuning of feeding practices for hatchery produced Persian sturgeon, Acipenser persicus and Beluga sturgeon, Huso huso. Aquaculture Research. pp: 1-10.
  5. Asgari, R.; Rafiee, Gh.; Eagderi, S.; Noori, F.; Agh, N.; Poorbagher, H. and Gisbert, E., 2013. Ontogeny of the digestive enzyme activities in hatchery produced Beluga (Huso huso). Aquaculture. pp: 416-417, 33-40.
  6. Ahumad-Hernández, R.I.; Alvarez-González, C.A.; Guerrero-Zárate, R.; Martínez-García, R.; Camarillo Coop, S.; Sánchez-Zamora, A.; Gaxiola-Cortes, M.G.; Palomino-Albarrán, I.G.; Tovar-Ramírez, D. and Gisbert, E., 2014. Changes of digestive enzymatic activity on yellowtail snapper during initial ontogeny. International Journal of Biology. Vol. 6, No. 4, pp: 110-118.
  7. Alvarez-González, C.A.; Cervantes-Trujano, M.; Tovar Ramírez, D.; Conklin, D.E.; Nolasco, H.; Gisbert, E. and Piedrahita, R., 2006. Development of digestive enzymes in California halibut Paralichthys californicus larvae. Fish Physiology and Biochemistry. Vol. 31, pp: 83-93.
  8. Alvarez-González, C.A.; Moyano-Lόpez, F. J.; Civera Cercedo, R.; Carrasco-Chávez, V.; Ortiz-Galindo, J. and Dumas, S., 2008. Development of digestive enzyme activity in larvae of spotted and bass (Palabrax maculatofasciatus). I: Biochemical analysis. Fish Physiology and Biochemistry. Vol. 34, pp: 373-384.
  9. Bardi, R.W.; Chapman, F.A. and Barrows, F.T., 1998. Feeding trials with hatchery-produced Gulf of Mexico sturgeon larvae. The Program Fish Culture. Vol. 60, pp: 25-31.
  10. Babaei, S.S.; Abedian Kenari, A.; Rajabmohammad Nazari, R. M. and Gisbert, E., 2011. Developmental changes of digestive enzymes in Persian sturgeon during larval ontogeny. Aquaculture. Vol. 318, pp: 138-144
  11. Biswas, A.K. and Takeuchi, T., 2003. Effects of photoperiod and feeding interval on food intake and growth of Nile tilapia Oreochromis niloticus L. Fisheries Science. Vol. 69, pp: 1010-1016.
  12. Biswas, A.K.; Seoka, M.; Inoue, Y.; Takii, K. and Kumai, H., 2005. Photoperiod influences the growth, food intake, feed efficiency and digestibility of red sea bream (Pagrusmajor). Aquaculture. Vol. 250, pp: 666-673.
  13. Bolasina, S.; Perez, A. and Yamashita, Y., 2006. Digestive enzymes activity during ontogenetic development and effect of starvation in Japanese flounder (Paralichthys olivaceus). Aquaculture.Vol. 252, No. 2-4, pp: 503-515.
  14. Boeuf, G. and Bail, P.Y., 1999. Does light have an influence on fish growth? Aquaculture. Vol. 177, pp:129-152.
  15. Buddington, R.K. and Doroshov, S.I., 1984. Feeding trials with hatchery produced white sturgeon juveniles (Acipenser transmontanus). Aquaculture. Vol. 36, pp: 237-243.
  16. Buddington, R.K., 1985. Digestive secretions of lake sturgeon, Acipenser fulvescens, during early development. Journal of Fish Biology. Vol. 26, pp: 715-723.
  17. Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. Vol. 72, pp: 248-254.
  18. Cahu, C. and Zambonino-Infante, J.L., 1997. Is the digestive capacity of marine fish larvae sufficient for a compound diet feeding? Aquacul Intern. Vol. 5, pp: 151-160.
  19. Cahu, C.; Rønnestad, I.; Grangier, V. and Zambonino Infante, J.L., 2004. Expression and activities of pancreatic enzymes in developing sea bass larvae in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture. Vol. 238, pp: 295-308.
  20. Cara, J. B.; Moyano, F. J.; Cardenas, S.; Fernandez-Diaz, C. and Yuffera, M., 2003. Assessment of digestive enzyme activities during larval development of white bream. Journal of Fish Biology. Vol. 63, pp: 48-58. 
  21. Chen, B.N.; Qin, J.G.; Kumar, M.S.; Hutchinson, W.G. and Clarke, S.M., 2006. Ontogenetic development of digestive enzymes in yellowtail kingfish, Seriola lalandi, larvae. Aquaculture. Vol. 260, pp: 264-271.
  22. Chong, A.S.C.; Hashim, R.’ Lee, C.Y. and Ali, B.A., 2002. Partial characterization and activities of proteases form the digestive tract of discus fish. Aquacul. Vol. 203, pp: 321-333.
  23. Darias, M.J.; Murray, H.M.; Gallant, J.W.; Douglas, S.E.; Yúfera, M. and Martínez-Rodríguez, G., 2007. Ontogeny of pepsinogen and gastric proton pump expression in red porgy (pagrus pagrus): determination of stomach functionality. Aquaculture. Vol. 270, pp: 369-378.
  24. Dabrowski, K.; Kaushik, S.J. and Fauconneau, В., 1985. Rearing of sturgeon (Acipencser baerii) larvea. I. Feeding trial. Aquaculture. Vol. 47, pp: 185-192.
  25. Dettlaff, T.A.; Ginsburg, A.S. and Schmalhausen, O.I., 1993. Development of prelarvae. Sturgeon Fishes. Developmental Biology and Aquaculture. Springer-Verlag Ed, Berlin, Germany. pp: 155-221.
  26. Kunz, Y.W., 2004. Developmental biology of fishes. Springer, Dordrecht. 636 p.
  27. Kuzmina, V.V., 1996. Influence of age on digestive enzymes activity in some freshwater teleost. Aquaculture. Vol. 148, pp: 25-37.
  28. Kuzmina, V.V. and Gelman, A.G., 1998. Traits in the development of the digestive function in fish. Journal of Ichthyology. Vol. 39, No. 1, pp: 106-115.
  29. El sayed, A.M. and kawanna, M., 2004.  Effects of photoperiod on the performance of farmed nile tilapia: I. Growth, feed utilization efficiency and survival of fry and fingerlings. Aquaculture. Vol. 231, pp: 393-402
  30. Erlanger, B.; Kokowsky, N. and Cohen, W., 1961. The preparation and properties of two new chromogenic substrates of trypsin. Archive Biochemistry and Biophysics. Vol. 95, pp: 271-278.
  31. Iijima, N.; Tanaka, S. and Ota, Y., 1998. Purification and characterization of bile saltactivated lipase from the hepatopancreas of red sea bream, Pagrus major. Fish Physiology and Biochemistry. Vol. 18, pp: 59-69.
  32. Furné, M.; García-Gallego, M.; Hidalgo, M.C.; Morales, A.E.; Domezain, A.; Domezain, J. and Sanz, A., 2008. Effect of starvation and refeeding on digestive enzyme activities in sturgeon and trout. Comparative Biochemistry and Physiology. Vol. 149, pp: 420-425.
  33. Gisbert, E. and Sarasquete, C., 2000. Histochemical identification of the blackbrown pigment granules found in the alimentary canal of Siberian sturgeon (Acipenser baeri) during the lecitotrophic stage. Fish Physiology and Biochemistry. Vol. 22, pp: 349-354.
  34. Gisbert, E. and Williot, P., 2002. Advances in the larval rearing of Siberian sturgeon. Journal of Fish Biology. Vol. 60, pp: 1071-1092.
  35. Gisbert, E. and Doroshov, S., 2006. Allometric growth in green sturgeon larvae. J.Appl. Ichthyol. Vol. 22, pp: 202-207.
  36. Gisbert, E.; Giménez, G.; Fernández, I.; Kotzamanis, Y. and Estévez, A., 2008. Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture. pp: 484-628.
  37. Gisbert, E.; Gimenez, G.; Fernández, I.; Kotzamanis, Y. and Estevez, A., 2009. Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture. Vol. 287, pp: 381-387.
  38. Hart, P.R.; Hutchinson, W.G.J. and Purser, G., 1996. Effects of photoperiod, temperature and salinity on hatchery reared larvae of the greenback flounder (Rhombosolea tapirina Günter, 1862). Aquaculture. Vol. 144, pp: 303-311.
  39. Henning, S.J., 1987. Functional development of the gastrointestinal tract, Physiology of the Gastrointestinal Tract, 2nd edition. Raven Press, New York. pp: 285-300.
  40. Jiang, W.D.; Feng, L.; Liu, Y.; Jiang, J. and Zhou, X.Q., 2009. Growth, digestive capacity and intestinal microflora of juvenile Jian carp fed graded levels of dietary inositol. Aquaculture Research. Vol. 40, pp: 955-962.
  41. Jiménez-Martínez, L.D.; Alvarez-González, C.A; Tovar Ramírez, D.; Gaxiola, G.; Sanchez-Zamora, A.; Moyano, F.J. and Palomino-Albarrán, I.G., 2012. Digestive enzyme activities during early ontogeny in Common snook. Fish Physiology and Biochemistry. Vol. 38, pp: 441-454.
  42. Lazo, J.P.; Holt, G.J. and Arnold, C.R., 2000. Ontogeny of pancreatic enzymes in larval red drum Sciaenops ocellatus. Aquaculture Nutrition. Vol. 6, pp: 183-192.
  43. Lazo, J.P.; Mendoza, R.; Holt, G.J.; Aguilera, C. and Arnold, C.R., 2007. Characterization of digestive enzymes during larval development of red drum (Sciaenops ocellatus). Aquaculture. Vol. 265, pp: 194-205.
  44. Lauf, M. and Hoffer, R., 1984. Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture. Vol. 37, pp: 335-346.
  45. Lojda, Z.; Gossrau, R. and Schiebler, T.H., 1979. Enzyme histochemistry: A Laboratory. Manual. NewYork: Springer.
  46. Ma, N.; Cai, L.; U, W.J.; Tan, H. and Cao, J.P., 2005. Exogenous ethylene influences flower opening of cut roses by regulating the genes encoding ethylene biosynthesis enzymes. Science in China, Series C. Vol. 48, pp: 434-444.
  47. Munilla-Moran, R.R.; Stark, J.R. and Barbour, A., 1990. The Role of exogenous enzymes in digestion in cultured turbot larvae. Aquaculture. Vol. 88, pp: 117-350.
  48. Moyano, F.J.; Diaz, M.; Alarcon, F.J. and Sarasquete, M.C., 1996. Characterization of digestive enzyme activity during larval development of gilthead seabream.
  49. Nazemroaya, S.; Yazdanparast, R.; Nematollahi, M.A.; Farahmand, H. and Mirzadeh, Q., 2015. Ontogenetic development of digestive enzymes in Sobaity sea bream Sparidentex hasta larvae under culture condition. Aquaculture. Vol. 448, pp: 545-551.
  50. Noori, F.; Van Stappen, G. and Sorgeloos, P., 2011. Preliminary study on the activity of protease enzymes in Persian sturgeon (Acipenser persicus Borodin, 1897) larvae in response to different diets: effects on growth and survival.
  51. Pradhan, P.K.; Jena, J.; Mitra, G.; Sood, N. and Gisbert, E., 2013. Ontogeny of digestive enzymes in butter catfish, Ompok bimaculatus, larvae. Aquacult. pp: 372-375, 62-69.
  52. Pedersen, B.H.; Nilssen, E.M. and Hjelmeland, K., 1987. Variation in the content of trypsin and trypsinogen in larval herring (Clupea harengus) digesting copepod nauplii. Marine Biology. Vol. 94, pp: 171-181.
  53. Reynalte-Tataje, D.; Luz, R.K.; Meurer, S.; Zaniboni Filho, E. and Oliveria Nuῆer, A.P., 2002. Influence of photoperiod on the growth and survival of piranjuba post larvae Brycon orbignyanus (Osteichthyed, Characidae). Acta Scientiarum. Vol.n24, pp: 439-443.
  54. Rønnestad, I. and Morais, S., 2007. Digestion. In: Fin, RN, Kapoor, B.G.(Eds), Fish Larval Physiology. Enfield, Science Publishers. pp: 201-262.
  55. Rungruangsak, K. and Utne, F., 1981. Effect of different acidified wet feeds on protease activities in the digestive tract and on growth rate of rainbow trout. Aquaculture. Vol. 22, pp: 67-79.
  56. Segner, H.; Storch, V.; Reinecke, M.; Kloas, W. and Hanke, W., 1994. The development of functional digestive and metabolic organs in turbot, Scophthalmus maximus. Mar. Biol. Vol. 119, pp: 471-486.
  57. Shan, X.; Xiao, Z.; Huang, W. and Dou, S., 2008. Effects of photoperiod on growth, mortality and digestive enzymes in miiuy croaker larvae and juveniles. Aquaculture. Vol. 281, pp: 70-76.
  58. Suzer, C.; Kamaci, H.O.; Oban, D.C. and Saka, S., 2007. Digestive enzyme activity of the red porgy (Pagrus pagrus, L.) during larval development under culture conditions. Aquaculture Research. Vol. 38, pp: 1778-1785.
  59. Srivastava, A.S.; Kurokawa, T. and Suzuki, T., 2002. mRNA expression of pancreatic enzyme precursors and estimation of protein digestibility in first feeding larvae of the Japanese flounder, Paralichthys olivaceus. Comparative Biochemistry and Physiology. Vol. 132A, pp: 629-635.
  60. Twining, S.S.; Alexander, P.A.; Huibregste, K. and Glick, D.M., 1983. A pepsinogen from rainbow trout. Comparative Biochemistry Physiology. Vol. 75, pp: 109-112.
  61. Trippel, E.A. and Neil, S.R.E., 2003. Effects of photoperiod and light intensity on growth and activity of juvenile haddock. Aquaculture. Vol. 217, pp: 633-645.
  62. Verreth, J. and Segner, H., 1995. The impact of development on larval nutrition. In: Lavens, P., Jasper, E., Roelants, I. (Eds.), Larvi' 95, Fish and Shellfish Larviculture Symposium, Europe. Aquacult. Society, Special publication. Ghent, Belgium.
  63. Villamizar, N.; Blanco-Vives, B.; Migaud, H.; Davie, A.; Carboni, S. and Sánchez-Bázquez, F.J., 2011. Effects of light during early larval development of some aquacultured teleosts: a review. Aquaculture. Vol. 315, pp: 86-94.
  64. Yúfera, M, and Darias MJ., 2007 the onset of exogenous feeding in marine fish larvae. Aquaculture. Vol. 268, pp: 53-63.
  65. Worthington, C., 1991. Worthigton Enzyme Manual Related Biochemical Freehold. New Jersey Worthington, C. (1991). Worthigton Enzyme Manual Related Biochemical Freehold. New Jersey.
  66. Walford, J. and Lam, T.J., 1993. Development of digestive tract and proteolytic enzyme activity in seabass larvae and juveniles. Aquaculture. Vol. 109, pp: 187-205.  
  67. Zambonino-Infante, J.L. and Cahu, C., 2001. Ontogeny of the gastrointestinal tract of marine fish larvae. Comp. Biochem. Physiol. Vol. 130, pp: 477-487.
  68. Zambonino-Infante, J.; Gisbert, E.; Sarasquete, C.; Navarro, I.; Gutiérrez, J. and Cahu, C.L., 2009. Ontogeny and physiology of the digestive system of marine fish larvae. Feeding and Digestive Functions of Fish. Science Publishers, Inc, Enfield, USA. pp: 277-344.
  69. Zambonino-Infante, J.L.and Cahu, C.,1994. Development and response to a diet change of some digestive enzymes in sea bass, Dicentrarchus labrax, larvae. Fish physiology & Biochemistry. Vol. 12, pp: 199-408.
  70. Zamani, A.; Hajimoradloo, A.; Madani, R. and Farhangi, M., 2009. Assessment of digestive enzymes activity during the fry development of the endangered Caspian brown trout Salmo caspius. Journal of Fish Biology. Vol. 75, pp: 932-937.
  71. Zółtowska, K.; Kolman, R.; Lopienska, E. and Kolman, H., 1999. Activity of digestive enzymes in Siberian sturgeon juveniles (Acipenser baeri Brandt), a preliminary study. Arch. Polish Fisheries. Vol. 7, pp: 201-211.