فعالیت آنتی اکسیدان های تام و اکسیدنیتریک در مایع سمینال موش های نر نژاد Balb/c تیمار شده با غلظت های مختلف نانوذرات نقره

نوع مقاله : زیست شناسی (جانوری)

نویسنده

گروه بیوشیمی، دانشگاه آزاد اسلامی، واحد ساری، ایران، کد پستی: 4816613485

چکیده

 با توجه به نقش نانوذرات نقره در القاء تولید رادیکال­ های آزاد، در این مطالعه اثرات سمی نانوذرات نقره بر پارامترهای اسپرم، غلظت نیتریک اکسید (NO) و فعالیت آنتی اکسیدان­ های تام در مایع سمینال موش نر مورد بررسی قرار گرفته است. در این مطالعه تجربی، 24 موش نر بالغ از نژاد سوری به ­صورت تصادفی به سه گروه تجربی و یک گروه شاهد تقسیم شدند. نانوذرات نقره با غلظت­ های 0/07 (A گروه)،  0/14 (گروه B) و 0/28 (گروه C) میکروگرم در هر روز، به ­ترتیب به گروه­ های اول تا سوم مورد مطالعه و به ­صورت دهانی به ­مدت پنج هفته داده شد. سپس فعالیت آنتی ­اکسیدان­ های تام و نیتریک اکسید به ­ترتیب به ­روش ­های FRAP(Ferric reducing antioxidant of power) و کیت NO اندازه­ گیری شد. پارامترهای اسپرمی به ­روش میکروسکوپی مورد آنالیز قرار گرفتند. کاهش معنی­ داری در میانگین کیفیت پارامترهای اسپرمی در گروه­ های تیمار شده با نانوذره، به­ خصوص گروه­ های و C در مقایسه با گروه شاهد مشاهده گردید (0/01>p). تفاوت معنی­ داری در میانگین غلظت FRAP بین گروه ­های تیمارشده A(28/14±290/29) ،B(39/32±225/47) ،C(22/73±225/54 و  گروه شاهد (19/08±300/18) میکرومول بر لیتر مشاهده گردید (0/001>p). تفاوت معنی­ داری در میانگین NO نیز مشاهده گردید، به ­طوری ­که گروه C بیش ­ترین میانگین NO را در مقایسه با سایر گروه ­ها داشت. نانوذرات نقره با کاهش فعالیت آنتی ­اکسیدان­ های تام و افزایش NO سبب کاهش پارامترهای اسپرم می­ گردد که اثرات آن وابسته دوز نیز می­ باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Total antioxidant capacity and nitric oxide values in seminal plasma of Balb/c male rats treated with different concentrations of silver nanoparticle

نویسنده [English]

  • ISSA LAYALI
Department of Biochemistry, Islamic Azad University, Sari Branch, Sari, Iran
چکیده [English]

According to the harmful effects of silver nanoparticles induced by free radicals production, it is assumed that it can lead to reduced level of seminal total antioxidant capacity and then poor sperm quality. In this research, we aimed to investigate the toxic effects of silver nanoparticles on sperm parameters quality as well as total antioxidant capacity and nitric oxide (NO) in seminal plasma of male rats. In this experimental research, 24 male rats (Balb/c) were randomly divided into four groups including: controls (n=6), treatment group A (n=6), treatment group B (n=6) and treatment group C (n=6). Commercial silver nanoparticle was injected orally in a single dose (A=0.007μg, B=0.14μg and C=0.28μg per day) for 4 consecutive weeks. After that seminal total antioxidant capacity and NO values were measured using Ferric reducing antioxidant of power (FRAP) and microscopic techniques, respectively. Sperm parameters quality was considered by microscopic methods. There was a significant reduction in sperm parameters quality in treatment groups, especially in group C and group B, when compared with controls (p<0.01). There was a significant difference for FRAP between study groups of A (290.29±28.14), B (225.47±39.32), C (225.54±22.73) and control (300.18±19.08) group (p<0.001). There was a significant in mean of NO levels between groups (p<0.05), in which group C demonstrated higher mean value of NO concentration compared to the other groups. Silver nanoparticle leads to poor sperm quality via reducing of seminal total antioxidant capacity; however, its effect is dose dependent.         

کلیدواژه‌ها [English]

  • Silver nanoparticles
  • sperm parameters
  • Total Antioxidant Capacity
  • NO
  • male rats
  1. Baki, M.E.; Miresmaili, S.M.; Pourentezari, M.; Amraii, E.; Yousefi, V.; Spenani, H.R.; Talebi, A.R.; Anvari, M.; Fazilati, M.; Fallah, A.A. and Mangoli, E., 2014. Effects of silver nano particles on sperm parameters, number of Leydig cells and sex hormones in rats. Iran J Reprod Med. Vol. 12, No. 2, pp: 139-144.
  2. Barkhordari, A.; Barzegar, S.; Hekmatimoghaddam, H.; Jebali, A.; Rahimi Moghadam, S. and Khanjani, N., 2014. The toxic effects of silver nanoparticles on blood mononuclear cells. Int J Occup Environ Med. Vol. 5, No. 3, pp: 164-168.
  3. Benzie, I.F. and Strain, J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem. Vol. 239, No. 1, pp: 70-76.
  4. Cao, X.W.; Lin, K.; Li, C.Y. and Yuan, C.W., 2011. A review of WHO Laboratory Manual for the Examination and Processing of Human Semen (5th edition). Zhonghua Nan Ke Xue. Vol. 17, No. 12, pp: 1059-1063.
  5. Chalah, T. and Brillard, J.P., 1998. Comparison of assessment of fowl sperm viability by eosin-nigrosin and dual fluorescence (SYBR-14/PI). Theriogenology. Vol. 50, No. 3, pp: 487-493.
  6. Chen, L.Q.; Fang, L.; Ling, J.; Ding, C.Z.; Kang, B. and Huang, C.Z., 2015. Nanotoxicity of silver nanoparticles to red blood cells: size dependent adsorption, uptake, and hemolytic activity. Chem Res Toxicol. Vol. 28, No. 3, pp: 501-509.
  7. Colagar, A.H.;  Jorsaraee, G.A. and Marzony, E.T., 2007. Cigarette smoking and the risk of male infertility. Pak J Biol Sci. Vol. 10, No. 21, pp: 3870-3874.
  8. Colagar, A.H. and Marzony, E.T., 2009. Ascorbic Acid in human seminal plasma: determination and its relationship to sperm quality. J Clin Biochem Nutr. Vol. 45, No. 2, pp: 144-149.
  9. Colagar, A.H.; Marzony, E.T. and Chaichi, M.J., 2009. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutr Res. Vol. 29, No. 2, pp: 82-88.
  10. De Jong, W.H.; Van Der Ven, T.; Sleijffers, A.; Park, M.V.; Jansen, E.H.; Van Loveren, H. and Vandebriel, R.J., 2013. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats. Biomaterials. Vol. 34, No. 33, pp: 8333-8343.
  11. Drescher, D.; Buchner T.; McNaughton, T. and Kneipp, J., 2013. SERS reveals the specific interaction of silver and gold nanoparticles with hemoglobin and red blood cell components. Phys Chem Chem Phys. Vol. 15, No. 15, pp: 5364-5373.
  12. Tahmasbpour Marzony, E.; Jorsaraei, S.G.A.; Pouramir, M. and Colagar, A.H., 2012. Seminal Plasma Antioxidant Capacity in Human Semen with Hyperviscosity. Babol University of Medical Science Journal. Vol. 14, No. 16, pp: 39-44
  13. Gromadzka-Ostrowska, J.; Dziendzikowska, K.; Lankoff, A.; Dobrzynska, M.; Instanes, C.; Brunborg, G.; Gajowik, A.; Radzikowska, J.; Wojewodzka, M. and Kruszewski, M., 2012. Silver nanoparticles effects on epididymal sperm in rats. Toxicol Lett. Vol. 214, No. 3, pp: 251-258.
  14. Hsin, Y.H.; Chen, C.F.; Huang, S.; Shih, T.S.; Lai, P.S. and Chueh, P.J., 2008. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett. Vol. 179, No. 3, pp: 130-139.
  15. Kermani-Alghoraishi, M.; Anvari, M.; Talebi, A.R.; Amini-Rad, O.; Ghahramani, R. and Miresmaili, S.M., 2010. The effects of acrylamide on sperm parameters and membrane integrity of epididymal spermatozoa in mice. Eur J Obstet Gynecol Reprod Biol. Vol. 153, No. 1, pp: 52-55.
  16. Komatsu, T.; Tabata, M.; Kubo-Irie, M.; Shimizu, T.; Suzuki, K.; Nihei, Y. and Takeda, K., 2008. The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicol In Vitro. Vol. 22, No. 8, pp: 1825-1831.
  17. Layali, I.; Tahmasbpour, E.; Joulaei, M.; Jorsaraei S.G. and Farzanegi, P., 2015. Total antioxidant capacity and lipid peroxidation in semen of patient with hyperviscosity. Cell J. Vol. 16, No. 4, pp: 554-559.
  18. Mangoli, E.; Talebi, A.R.; Anvari, M. and Pourentezari, M., 2013. Effects of experimentally-induced diabetes on sperm parameters and chromatin quality in mice. Iran J Reprod Med. Vol. 11, No. 1, pp: 53-60.
  19. Mathias, F.T.; Romano, R.M.; Kizys, M.M.; Kasamatsu, T.; Giannocco, G.; Chiamolera, M.I.; Dias-da-Silva, M.R. and Romano, M.A., 2015. Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology. Vol. 9, pp: 64-70.
  20. Miresmaeili, S.M.; Halvaei, I.; Fesahat, F.; Fallah, A.; Nikonahad, N. and Taherinejad, M., 2013. Evaluating the role of silver nanoparticles on acrosomal reaction and spermatogenic cells in rat. Iran J Reprod Med. Vol. 11, No. 5, pp: 423-430.
  21. Park, Y.S.; Park, S.; Ko, D.S.; Park, D.W.; Seo, J.T. and Yang, K.M., 2014. Observation of sperm-head vacuoles and sperm morphology under light microscope. Clin Exp Reprod Med. Vol. 41, No. 3, pp: 132-136.
  22. Tahmasbpour, E.; Balasubramanian, D. and Agarwal, A., 2014. A multi-faceted approach to understanding male infertility: gene mutations, molecular defects and assisted reproductive techniques (ART). J Assist Reprod Genet. Vol. 31, No. 9, pp: 1115-1137.
  23. Talebi, A.R.; Khalili, M.A.; Vahidi, S.; Ghasemzadeh, J. and Tabibnejad, N., 2013. Sperm chromatin condensation, DNA integrity, and apoptosis in men with spinal cord injury. J Spinal Cord Med. Vol. 36, No. 2, pp: 140-146.
  24. Taylor, U.; Tiedemann, D.; Rehbock, C.; Kues, W.A.; Barcikowski, S. and Rath, D., 2015. Influence of gold, silver and gold-silver alloy nanoparticles on germ cell function and embryo development. Beilstein J Nanotechnol. Vol. 6, pp: 651-664.
  25. Yang, H.L.; Lin, J.C. and Huang, C., 2009. Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res. Vol. 43, No. 15, pp: 3777-3786.