بررسی کیفیت آب و رشد بچه ماهی کپورمعمولی (Cyprinus carpio) تحت تغذیه با جیره های حاوی سطوح مختلف پروتئین در سیستم بیوفلوک

نوع مقاله : تغذیه

نویسندگان

1 گروه شیلات، دانشکده شیلات و محیط زیست، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، صندوق پستی: 487-49175

2 گروه تغذیه دام و طیور، دانشکده علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، صندوق پستی: 487-49175

چکیده

این مطالعه جهت ارزیابی اثرات بیوفلوک روی بهبود کیفیت آب و عملکرد رشد بچه ماهی کپورمعمولی (Cyprinus carpio) تغذیه شده با جیره­ های حاوی مقادیر مختلف پروتئین به ­میزان 23، 27، 31 و 35 درصد و تیمار آزمایشی بدون بیوفلوک در یک دوره 8 هفته صورت گرفت. متوسط مقدار اکسیژن (5/33) و( pH (8/05  در تیمارها بررسی شده و در تیمار شاهد بیش­ تر از تیمارهای بیوفلوکی بود. غلظت جامدات معلق کل  در تیمارهای بیوفلوکی به ­طور معنی ­داری بالاتر از تیمار شاهد بود (0/05>P) کیفیت خوب آب با توسعه بیوفلوک از طریق افزودن ملاس چغندرقند در طی آزمایش غذایی نگه داشته شد. با گذشت زمان و توسعه بیوفلوک در تیمارهای بیوفلوکی، مقدار آمونیاک، نیترات و نیتریت از هفته چهارم آزمایش شروع به کاهش نمود و در انتهای آزمایش مقدار آن ­ها در تیمارهای بیوفلوکی کم ­تر از تیمار شاهد شده بود. رشد براساس درصد وزن حاصله و ضریب رشد ویژه در بچه ماهی ­های تغذیه شده با جیره­ های حاوی 27 و 31 درصد پروتئین  به­ طور معنی ­داری بالاتر از بچه ماهی های تیمار شاهد بود که با جیره حاوی 35% پروتئین تغذیه کرده بودند (0/05>P). در مجموع نتایج این مطالعه نشان داد که در سیستم بیوفلوک، تغذیه ماهی کپورمعمولی با جیره حاوی 27 و 31 درصد پروتئین، بهترین نتیجه را در بهبود کیفیت آب و عملکرد رشد دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating water quality and growth of Cyprinus carpio fingerlings fed with different protein levels of diet in biofloc system

نویسندگان [English]

  • Mahsa Mahmoudi Khoshdarehgi 1
  • Abdolmajid Haji Moradloo 1
  • Behrouz Dastar 2
1 Fisheries Department, Faculty of Fisheries and Environmental sciences, Gorgan University of Agricultural Sciences and Natural Resources., P.O.Box: 49175-487 Gorgan, Iran
2 Animal and Poultry Nutrition Department, Faculty of Animal Science, Gorgan University of Agricultural Sciences and Natural Resources, P.O.Box: 49175-487 Gorgan, Iran
چکیده [English]

This study was conducted to investigate the effects of biofloc on water quality and growth efficiency of Cyprinus carpio fingerlings fed with different protein levels (23%, 27%, 31% and 35%) and a trial treatment with no biofloc in 8 weeks period. Mean oxygen rate (5.33) and pH (8.05) were investigated and were high in control treatment than BFT treatments. Total suspended solids was significantly high than control treatment (P<0.05). During feed experiment, good water quality was kept with biofloc development by adding sugar beet molasses. In biofloc treatments, ammonia, nitrate and nitrite amount decreased from the fourth week through time and biofloc developments, and their amount in biofloc treatments was lower than control treatment at the end of the experiment. Growth efficiency based on weight gain percentage and specific growth rate in fingerlings fed with 27% and 31% protein level was significantly higher than control treatment that fed with diet containing 35% protein (P<0.05). Totally, results of this study showed that in biofloc system, feeding of Cyprinus carpio with diet containing 27 and 31% protein has the best result in improvement of water quality and growth.

کلیدواژه‌ها [English]

  • Water quality
  • Growth efficiency
  • Cyprinus carpio
  • Protein diet
  • Biofloc system
  1. بخشی، ف.؛ ملک­زاده­ویایه، ر. و حسین­نجدگرامی، آ.، 1393. بررسی بازدهی استفاده از سیستم تولید توده زیستی (Biofloc) در پرورش متراکم ماهی کپورمعمولی (Cyprinus carpio). فصلنامه علمی پژوهشی محیط زیست جانوری. دوره 6، شماره 3، صفحات 45 تا 52.
  2. عظیمی، ع.؛ جعفریان، ح.؛ هرسیج، م.؛ قلی­پور، ح. و پاتیمار، ر.، 1395. تأثیر نسبت­ های مختلف کربن به نیتروژن بر پارامترهای کیفی آب و عملکرد رشد بچه ­ماهیان کپورمعمولی (Cyprinus carpio) در سیستم بیوفلاک. نشریه توسعه آبزی ­پروری. سال 10، شماره 4، صفحات 75 تا 89.
  3. AOAC. 2005. Official Methods of Analysis . Association of Official Analytical Chemists, Gaithersburg, MD, USA.
  4. Avnimelech, Y., 1999. Carbon/nitrogen ratio as control element in aquaculture systems. Aquaculture. Vol. 176, No. 3-4, pp: 227-235.
  5. Avnimelech, Y., 2006. Bio-filters: the need for a new comprehensive approach. Aquacultural Engineering. Vol. 34, No. 3, pp: 172-178.
  6. Avnimelech, Y., 2012. Biofloc Technology - A Practical Guide Book, 2nd ed. The World Aquaculture Society. Baton Rouge, Louisiana, EUA. 272 P.
  7. Avnimelech, Y.; Mozes, N. and Weber, B., 1992. Effects of aeration and mixing on nitrogen and organic matter transformations in simulated fish ponds. Aquaculture Engineering. Vol. 11, No. 3, pp: 157-69.
  8. Azimi, M.E. and Little, D.C., 2008. The biofloc technology (BFT) in indoor tanks: water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture. Vol. 283, No. 1-4, pp: 29-35.
  9. Azimi, M.E.; Little, D.C. and Bron, J.E., 2008. Microbial protein production in activated suspension tanks manipulating C: N ratio in feed and the implications for fish culture. Bioresource Technology. Vol. 99, No. 9, 3590-3599.
  10. Burford, M.A.; Thompson, P.J.; McIntosh, R.P.; Bauman, R.H. and Pearson, D.C., 2004. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture. Vol. 232, No. 1-4, pp: 525-537.
  11. Correia, E.S.; Wilkenfeld, J.S.; Morris, T.C.; Wei, L.; Prangnell, D.I. and Samocha, T.M., 2014. Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacultural Engineering. Vol. 59, pp: 48-54.
  12. Crab, R., 2010. Bioflocs technology: an integrated system for the removal of nutrients and simultaneous production of feed in aquaculture. PhD thesis, Ghent University. 178 P.
  13. Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P. and Verstraete, W., 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture. Vol. 270, No. 1-4, pp: 11-14.
  14. Crab, R.; Kochva, M.; Verstraete, W. and Avnimelech, Y., 2009. Bio-flocs technology application in over-wintering of tilapia. Aquacultural Engineering. Vol. 40, pp: 105-112.
  15. Ebeling, J.M. and Timmons, M.B., 2007. Stoichiometry of ammonia-nitrogen removal in zero-exchange systems. World Aquaculture. Vol. 38, No. 2, pp: 22-25.
  16. Goimier, Y.; Pascual, C.; Sánchez, A.; Gaxiola, G.; Sánchez, A. and Rosas, C., 2006. Relation between reproductive, physiological, and immunological condition of Litopenaeus setiferus pre-adult males fed different dietary protein levels. Animal Reprod Science. Vol. 92, pp: 193-208.
  17. Gujer, W. and Jenkins, D., 1974. A nitrification model for contact stabilization activated sludge process. Water Research. Vol. 9, No. 5-6, pp: 561-566.
  18. Gutierrez-Wing, M.T. and Malone, R.F. 2006. Biological filters in aquaculture: trends and research directions for freshwater and marine applications. Aquacultural Engineering. Vol. 34, No. 3, pp: 163-171.
  19. Hargreaves, J.A., 2006. Photosynthetic suspended-growth systems in aquaculture. Aquacultural Engineering. Vol. 34, No. 3, pp: 344-363.
  20. Haridas, H.; Verma, A.K.; Rathore, G.; Prakash, C.; Sawant, P.B. and Babitha, Rani, A.M., 2017. Enhanced growth and immune-physiological response of Genetically Improved Farmed Tilapia in indoor biofloc units at different stocking densities. Aquaculture Research. Vol. 48, No. 8, pp: 4364-4355.
  21. Kureshy, N. and Davis, D.A., 2002. Protein requirement for maintenance and maximum weight gain for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture. Vol. 204, No. 1-2, pp: 125-143.
  22. Little, D.C.; Murray, F.J.; Azim, E.; Leschen, W.; Boyd, K.; Watterson, A. and Young, J.A., 2008. Option for producing a warm water fish in the UK: limit to green growth? Trends in Food Science and Technology. Vol. 19, No. 5, pp: 255-264.
  23. Luo, G.Z.; Avnimelech, Y.; Pan, Y.F. and Tan, H.X., 2013. Inorganic nitrogen dynamics in sequencing batch reactors using bioflocs technology to treat aquaculture sludge. Aquaculture Engineering. Vol. 52, pp: 73-79.
  24. Luo, G.; Wang, C.; Liu, W.; Sun, D.; Li, L. and Tan, H., 2014. Growth, digestive activity, welfare, and partial cost-effectiveness of genetically improved farmed tilapia (Oreochromis niloticus) cultured in a recirculating aquaculture system and an indoor biofloc system. Aquaculture. Vol. 422-423, pp: 1-7.
  25. Luz, R.K.; Martinez-Alvarez, R.M.; De Pedro, N. and Delgado, N., 2008. Growth, Food intake and metabolic adaptations in gold fish (Carassius auratus) exposed to different salinities. J of Aquaculture. Vol. 276, pp: 171-178.
  26. Malone, R.F.; Begeron, J. and Cristina, C.M., 2006. Linear versus Monod representation of ammonia oxidation rates in oligotrophic recirculating aquaculture systems. Aquacultural Engineering. Vol. 34, No. 3, pp: 214-223.
  27. Najdegerami, E.; Bakhshi, F. and Bagherzadeh Lakani, F., 2016. Effects of biofloc on growth performance, digestive enzyme activities and liver histology of common carp (Cyprinus carpio L.) fingerlings in zero-water exchange system. Fish Physiology and Biochemistry. Vol. 42, No. 2, pp: 457-465.
  28. Olah, J.; Sinha, R.P.; Ayyappan, S. and Purushothaman, C.S., 1987. Adheyshyams sediment consumption in tropical undrainable fish ponds. International Review of Hydrobiology. Vol. 72, No. 3, pp: 297-305.
  29. Pascual, C.; Zenteno, E.; Cuzon, G.; Sánchez, A.; Gaxiola, G.; Taboada, G.; Suárez, J.; Maldonado, T. and Rosas, C., 2004. Litopenaeus vannamei juveniles energetic balance and immunological response to dietary protein. Aquaculture. Vol. 236, No. 1-4, pp: 431-450.
  30. Piedrahita, R.H., 2003. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture. Vol. 226, No. 1-4, pp: 35-44.
  31. Poleo, G.; Aranbarrio, J.V.; Mendoza, L. and Romero, O., 2011. Cultivo de cachama blanca en altas densidades y en dos sistemas cerrados. PesquisaAgropecuáriaBrasileira. Vol. 46, No. 4, pp: 429-437.
  32. Schneider, O.; Sereti, V.; Eding, E.H. and Verreth, J.A.J., 2007. Heterotrophic bacterial production on solid fish waste: TAN and nitrate as nitrogen source under practical RAS conditions. Bioresource Technology. Vol. 98, No. 10, pp: 1924-1930. 
  33. Schneider, O.; Sereti, V.; Machiels, M.A.M.; Eding, E.H. and Verreth, J.A.J., 2006. The potential of producing heterotrophic bacterial biomass on aquaculture waste. Water Research. Vol. 40, No. 14, pp: 2684-2694.
  34. Schryver, P.D.; Crab, R.; Defoirdt, T.; Boon, N. and Verstraete, W., 2008. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture. No.277, No. 3-4, pp: 125-137.
  35. Sharma, B. and Ahlert, R.C., 1977. Nitrification and nitrogen removal. Water Research. Vol. 11, pp: 897-925.
  36. Sun, Y.; Zhang, S.; Chen, J and Song, J., 2001. Supplement and consumption of dissolved oxygen and their seasonal variations in shrimp pond. Marine Science Bulletin. Vol. 3, No. 2, pp: 89-96.
  37. Tacon, A.G.J.; Cody, J.J.; Conquest, L.D.; Divakaran, S.; Forster, I.P. and Decamp, O.E., 2002. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquaculture Nutrition. Vol. 8, No. 2, pp: 121-137.
  38. Tchobanoglous, G.; Burton, F.L. and Stensel, H. D., 2003. Wastewater engineering treatment and reuse. McGraw-Hill, Boston, Massachusetts, USA. 1408 P.
  39. Twarowska, J.G.; Westerman, P.W. and Losordo, T.M., 1997. Water treatment characterization evaluation of an intensive recirculating fish production system. Aquaculture Engineering. Vol. 16, No. 3, pp: 133-147.
  40. Visscher, P.T and Duerr, E.O., 1991. Water quality and microbial dynamics in shrimp ponds receiving bagase-based. Journal of the World Aquaculture Society. Vol. 22, No. 1, pp: 65-76.
  41. Wang, J.K., 2003. Conceptual design of a microalgae-based recirculating oyster and shrimp system. Aquaculture Engineering. Vol. 28, No. 1-2, pp: 37-46.
  42. Wasielesky, W.; Atwood, H.; Stokes, A. and Browdy, C.L., 2006. Effect of natural production in a zero exchange suspended microbial floc-based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture. Vol. 258, No. 1-4, pp: 396-403.
  43. Watanabe, W.O.; Ernst, D.H.; Chasar, M.P.; Wicklund, R.I. and Olla, B.L., 1993. The effects of temperature and salinity on growth and feed utilization of juvenile, sex-reversed male Florida red tilapia cultured in a recirculating system. Journal of Aquaculture. Vol. 112, pp: 309-320.
  44. Widanarni, Ekasari, J. and Maryam, S., 2012. Evaluation of biofloc technology application on water quality and production performance of Red Tilapia Oreochromis sp. cultured at different stocking densities. Hayati Journal of Bioscience. Vol. 19, No. 2, pp: 73-80.
  45. Williams, D.R.; Li, W.; Hughes, M.A.; Gonzalez, S.F.; Vernon, C.; Vidal, M.C. and Cossins, A.R., 2008. Genomic resources and microarrays for the common carp Cyprinus carpio L. Journal of Fish Biology. Vol. 72, pp: 2095-2117.
  46. Xu, W.J. and Pan, L.Q., 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture. Vol. 356-357, pp: 147-152.
  47. Xu, W.J. and Pan, L.Q., 2014. Evaluation of dietary protein level on selected parameters of immune and antioxidant systems, and growth performance of juvenile Litopenaeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquaculture. Vol. 426, pp: 181-188.
  48. Zhao, P.; Huang, J.; Wang, X.; Song, X.; Yang, C.; Zhang, X. and Wang, G., 2012. The application of bioflocs technology in high-intensive, zero exchange farming systems of Marsupenaeus japonicus. Aquaculture. Vol. 354-355, pp: 97-106.