بررسی تاثیر جایگزینی کنجاله کانولا به جای پودر ماهی در جیره غذایی ماهی پاکو قرمز (Piaractus brachypomus) بر عملکرد رشد، قابلیت هضم مواد مغذی و شاخص های خونی- ایمنی غیراختصاصی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه شیلات و منابع طبیعی، واحد بندرعباس، دانشگاه آزاد اسلامی، بندرعباس، ایران

2 گروه شیلات، دانشکده منابع طبیعی و محیط زیست، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

پودر ماهی از مهم ­ترین ترکیبات موجود در جیره­ های غذایی آبزیان محسوب می ­شود. آزﻣﺎیشی 63 روزه جهت بررسی تاثیر ﺳﻄﻮح ﻣﺨﺘﻠﻒ (10، 20، 30، 40، 50 و 100 درﺻﺪ) ﺟﺎﻳﮕﺰﻳﻨﻲ پروتئین ﻛﻨﺠﺎﻟﻪ ﻛﺎﻧﻮﻻ ﺑﺎ ﭘﻮدر ماهی در جیره غذایی ماهی ﭘﺎﻛﻮ (Piaractus brachypomus،  گرم 1/36±45/12) ﺑﺮ ﺷﺎخص های ﻋﻤﻠﻜﺮد رﺷﺪ، ﺿﺮﻳﺐ ﺗﺒﺪﻳﻞ ﻏﺬاﻳﻲ، میزان ﺑﻘﺎ، میزان قابلیت هضم جیره، فعالیت آنزیم های گوارشی و ﻛﺒﺪى و شاخص های هماتوایمنولوژیکی اﻧﺠﺎم ﺷﺪ. بیش ترین میزان معنی داری (0/05>p) وزن نهایی و میزان رﺷﺪ وﻳﮋه و کم ترین ﻣﻘﺪار ﺿﺮﻳﺐ ﺗﺒﺪﻳﻞ ﻏﺬاﻳﻲ در ماهیان ﭘﺎﻛﻮى ﺗﻐﺬﻳﻪ ﺷﺪه ﺑﺎ 40 درﺻﺪ ﻛﻨﺠﺎﻟﻪ ﻛﺎﻧﻮﻻ به ­دﺳﺖ آﻣﺪ. ﺑﺎ اﻓﺰاﻳﺶ ﺳﻄﺢ اﺳﺘﻔﺎده از ﻛﻨﺠﺎﻟﻪ ﻛﺎﻧﻮﻻ ﻧﺴﺒﺖ ﺗﺮى یدوتیرونین ﺑﻪ تیروکسین در ﺳﺮم ﺧﻮن ﻣﺎهیان ﭘﺎﻛﻮى ﺗﻐﺬﻳﻪ ﺷﺪه از 20 تا 100 درصد ﻧﺴﺒﺖ ﺑﻪ شاهد به ­طور معنی دارى اﻓﺰاﻳﺶ ﻳﺎﻓﺖ (0/05>p). روﻧﺪ ﻛﺎهشی معنی دارى در میزان ﻛﻠﺴﺘﺮول ﺗﺎم، ﺗﺮى گلیسرید، لیپوپروتئین های ﺑﺎ ﭼﮕﺎلی ﭘﺎیین و بسیار پایین در ﺳﺮم ﺧﻮن ﻣﺎهیان ﭘﺎﻛﻮ ﺑﺎ اﻓﺰاﻳﺶ ﺳﻄﺢ اﺳﺘﻔﺎده از ﻛﻨﺠﺎﻟﻪ ﻛﺎﻧﻮﻻ ﻣﺸﺎهده ﺷﺪ (0/05>p). ﺣﺪاﻛﺜﺮ ﻣﻘﺪار ﻗﺎﺑﻞ ﺗﺤﻤﻞ ﮔﻠﻮﻛﻮسینولات و فیتات در جیره غذایی ﻣﺎهی ﭘﺎﻛﻮ ﻛﻪ ﻣﻨﺠﺮ ﺑﻪ بیش ­ترین میزان رﺷﺪ وﻳﮋه و ﺿﺮﻳﺐ ﺗﺒﺪﻳﻞ ﻏﺬایی می ﺷﻮد، ﺑﻪ ترتیب در داﻣﻨﻪ 5/22-4/90 میکروﻣﻮل ﺑﺮ ﮔﺮم ﻣﺎده ﺧﺸﻚ و 6/52-6/12 ﮔﺮم ﺑﺮ کیلوﮔﺮم ﻗﺮار دارد. ﺑﺎ اﻓﺰاﻳﺶ ﺳﻄﺢ اﺳﺘﻔﺎده از ﻛﻨﺠﺎﻟﻪ ﻛﺎﻧﻮﻻ میزان فعالیت آنزیم های ﮔﻮارشی آمیلاز، لیپاز و تریپسین در روده ﻣﺎهیان ﭘﺎﻛﻮى آزﻣﺎیشی به ­طور معنی دارى اﻓﺰاﻳﺶ ﻳﺎﻓﺖ (0/05>p). ﺑﺮﺣﺴﺐ تکنیک ﺧﻂ ﺷﻜﺴﺘﻪ، بیش­ ترین میزان رﺷﺪ وﻳﮋه (1/91 درﺻﺪ وزن ﺑﺪن در روز) ﺑﺎ اﺳﺘﻔﺎده از 40/2 درﺻﺪ ﺟﺎﻳﮕﺰینی ﭘﻮدرﻣﺎهی ﺑﺎ ﻛﻨﺠﺎﻟﻪ ﻛﺎﻧﻮﻻ به ­دﺳﺖ آمد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Replacement of dietary fishmeal for canola meal on the growth performance, digestibility, digestive enzyme activities and hemato-immunological responses in pacu, Piaractus brachypomus (Cuvier, 1818)

نویسندگان [English]

  • Hossein Nazari 1
  • Alireza Salarzadeh 1
  • Omid Safari 2
  • Maziar Yahyavi 1
1 Department of Fisheries and Natural Resources, Bandar Abbas Branch, Islamic Azad University, Bandar Abbas, Iran
2 Department of Fisheries, Faculty of Natural Resources and Environment, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Fish powder is one of the most important ingredients in aquatic diets. A 63-day trial was conducted to examine the effect of different levels (10, 20, 30, 40, 50 and 100%) of fishmeal replacement for canola meal in the diet of pacu fish (Piaractus brachypomus, 45.12±1.36 g) on growth performance, survival rate, apparent digestibility coefficient of diets, activities of digestive and hepatic enzymes and hemato-immunological responses. The highest level of the final weight and specific growth rate and the lowest food conversion ratio were achieved in pacu fish fed with 40% canola meal. Significant decreasing trends were achieved in the serum levels of total cholesterol, triglyceride, and low-density lipoprotein of pacu fish fed with increasing the contents of canola meal (p < 0.05). Based on the growth indices, the maximum tolerable contents of dietary glucosinolate and phytate in the pacu fish were 4.90-5.22 µmol g-1 and 6.12-6.52 g kg-1, respectively. The activities of amylase, lipase, and trypsin in pacu fish increased according to enhance CM substitution levels (p < 0.05). According to the broken line technique, the highest specific growth rate (1.91% body weight day-1) was observed in pacu fish fed with 40.2% CM.

کلیدواژه‌ها [English]

  • Pacu fish
  • Canola meal
  • Growth performance
  • Immunity
  • Digestibility
  • Digestive enzymes
  1. Ahmadi, K.; Gholizadeh, H.A.; Ebadzadeh, H.R.; Hatami, F.; Fazli-Estabragh, M.; Hosseinpour, R.; Kazemian, A. and Rafiee, M., 2017. Iranian agriculture statistics in 2015-2016, first. ed. Agriculture Department Publication. Tehran. Iran.
  2. Amadou, I.; Kamara, M.T.; Tidjani, A. and Foh, M.B.K., 2010. Physicochemical and nutritional analysis of fermented soybean protein meal by lactobacillus plantarum Lp6. World J Dairy Food Sci. Vol. 5, pp: 114-118.
  3. AOAC. 2005. Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 18th ed. Association of Official Analytical Chemists. AOAC International, Maryland, USA.
  4. Azevedo, P.A.; Leeson, S.; Cho, C.Y. and Bureau, D.P., 2004. Growth, nitrogen and energy utilization of juveniles from four salmonid species: Diet, species and size effects. Aquaculture. Vol. 234, pp: 393-414.
  5. Bransden, M.P.; Carter, C.G. and Nowak, B.F., 2001. Effects of dietary protein source on growth, immune function, blood chemistry and disease resistance of Atlantic salmon (Salmo salar L.) parr. Anim. Sci. Vol. 73, pp: 105-113.
  6. Bulbul, M.; Koshio, S.; Ishikawa, M.; Yokoyama, S. and Kader, M.A., 2013. Performance of kuruma shrimp, fed diets replacing fish meal with a combination of plant meals. Aquaculture. Vol. 372, pp: 45-51.
  7. Burel, C.; Boujard, T.; Kaushik, S.J.; Boeuf, G.; Van Der Geyten, S.; Mol, K.A.; Kuhn, E.R.; Quinsac, A.; Krouti, M. and Ribailler, D., 2001. Effects of rapeseed meal Glucosinolates on Thyroid metabolism and feed utilization in rainbow trout. Gen. Com. Endocrinol. Vol. 124, pp: 343-358.
  8. Cahu, C.; Zambonino Infante, J.; Quazuguel, P. and Le Gall, M., 1999. Protein hydrolysate vs. fish meal in compound diets for 10-day old sea bass Dicentrarchus labrax larvae. Aquaculture. Vol. 171, pp: 109-119.
  9. Cai, C.; Song, L.; Wang, Y.; Wu, P.; Ye, Y.; Zhang, Z. and Yang, C., 2013. Assessment of the feasibility of including high levels of rapeseed meal and peanut meal in diets of juvenile crucian carp (Carassius auratus gibelio♀ × Cyprinus carpio ♂) Growth immunity, intestinal morphology & microflora. Aquaculture. Vol. 410, pp: 203-215.
  10. Calabrese, E.J. and Baldwin, L.A., 2003. Toxicology rethinks its central belief. Nature. Vol. 421, pp: 691-692.
  11. Cech, J.; McCormick, S. and  McKinlay, D., 2000. Energy reserves and nutritional status of juvenile Chinook salmon emigrating from the Snake River, Intern. Cong. Biol. Fish, Univ. Aberdeen, Scotl. pp: 23-27.
  12. Cheng, N.; Chen, P.; Lei, W.; Feng, M. and Wang, C., 2016. The sparing effect of phytase in plant‐protein‐based diets with decreasing supplementation of dietary NaH2PO4 for juvenile yellow catfish Pelteobagrus fulvidraco. Aquac. Res. Vol. 47, No. 12, pp: 3952-3963.
  13. Clerton, P.; Troutaud, D.; Verlhac, V.; Gabaudan, J. and Deschaux, P., 2001. Dietary vitamin E and rainbow trout (Oncorhynchus mykiss) phagocyte functions: effect on gut and on head kidney leucocytes. Elsevier.
  14. Da, C.T.; Lundh, T. and Lindberg, J.E., 2013. Digestibility of dietary components and amino acids in animal and plant protein feed ingredients in striped catfish fingerlings. Aquac. Nutr. Vol. 19, No. 5, pp: 741-750.
  15. Daniel, N.; Angela Mercy, A.; Nageswari, P. and Ezhilarasi, D.R., 2016. Perspectives of genetically modified plants for the expansion of plant feedstuffs in aquaculture. Aquac. times. Vol. 2, No. 2, pp: 8-13.
  16. Dawood, M.A.; El-Dakar, A.; Mohsen, M.; Abdelraouf, E.; Koshio, S.; Ishikawa, M. and Yokoyama, S., 2014. Effects of using exogenous digestive enzymes or natural enhancer mixture on growth, feed utilization, and body composition of rabbitfish, Siganus rivulatus. J. Agric. Sci. Technol. B. Vol. 4, No. 3B.
  17. Dawood, M.A.O.; Koshio, S.; Ishikawa, M. and Yokoyama, S., 2015. Effects of partial substitution of fish meal by soybean meal with or without heat-killed Lactobacillus plantarum (LP20) on growth performance, digestibility, and immune response of Amberjack, Seriola dumerili juveniles. BioMed Res. Int.
  18. Ding, Z.; Zhang, Y.; Ye, J.; Du, Z. and Kong, Y., 2015. An evaluation of replacing fish meal with fermented soybean meal in the diet of Macrobrachium nipponense : Growth , nonspecific immunity , and resistance to Aeromonas hydrophila. Fish Shellfish Immunol. pp: 1-7.
  19. Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Dawood, M.A.O.; El Basuini, M.F.; El-Hais, A.M. and Olivier, A., 2018a. Effect of partial replacement of fish meal by fermented rapeseed meal on growth, immune response and oxidative condition of red sea bream juvenile, Pagrus major. Aquaculture. doi:10.1016/j.aquaculture.2018.02.010
  20. Dossou, S.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Dawood, M.A.O.; El Basuini, M.F.; Olivier, A. and Zaineldin, A.I., 2018b. Growth performance, blood health, antioxidant status and immune response in red sea bream (Pagrus major) fed Aspergillus oryzae fermented rapeseed meal (RM-Koji). Fish shellfish immunol. Vol. 75, pp: 253-262.
  21. Eales, J.G. and Brown, S.B., 1993. Measurement and regulation of thyroidal status in teleost fish. Biol. Fish. Vol. 3, pp: 299-347.
  22. Espe, M.; Rathore, R.M.; Du, Z.Y.; Liaset, B. and El Mowafi, A., 2010. Methionine limitation results in increased hepatic FAS activity, higher liver 18:1 to 18:0 fatty acid ratio and hepatic TAG accumulation in Atlantic salmon, Salmo salar. Amin. acids. Vol. 39, No. 2, pp: 449-460.
  23. Essa, A.M.; Mabrouk, A.H. and Zaki, A.M., 2004. Growth performance of grass carp, Ctenopharyngodon idella and hybrid grass carp fingerlings fed on different types of aquatic plants and artificial diet in concrete basins. Egypt. J. Aquat. Res. Vol. 30, No. B, pp: 341-348.
  24. FAO. 2016. The State of World Fisheries and Aquaculture (SOFIA). Food and Agriculture Organization of the United Nations, Rome, Italy.
  25. FAO. 2014. Psetta maxima (Linnaeus, 1758). Statistical information, global aquaculture production 1950-2012: Fisheries and Aquaculture Department. Rome, Italy.
  26. Farhangi, M. and Carter, C.G., 2007. Effect of enzyme supplementation to dehulled lupin- based on growth, feed efficiency, nutrient digestibility and carcass composition of rainbow trout. Aquac. Res. Vol. 38, pp: 1274-1282.
  27. Folch, J.; Lees, M. and Stanley, G.H.S., 1957. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. doi:10.1007/s10858.011.9570.9.
  28. Francis, G.; Makkar, H.P.S. and Becker, K., 2001. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. Vol. 199, pp: 197-227.
  29. Frias, J.; Song, Y.S. and Martínez-Villaluenga, C., 2008. Immunoreactivity and amino acid content of fermented soybean products. J. Agric. Food Chem. Vol. 56, pp: 99-105.
  30. Galicia-González, A.; Goytortúa-Bores, E.; Palacios, E.; Civera-Cerecedo, R.; Moyano-López, F.J.; Cruz-Suárez, L.E. and Ricque-Marie, D., 2010. Chemical Composition and Digestibility of Three Mexican Safflower Meals Used as Ingredients in Diets for Whiteleg Shrimp, Litopenaeus vannamei. J. World Aquac. Soc. Vol. 41, pp: 191-202.
  31. Gatlin III, D.M.; Barrows, F.T.; Brown, P.; Dabrowski, K.; Gaylord, T.G.; Hardy, R.W.; Herman, E.; Hu, G.; Krogdahl, A.; Nelson, R.; Overturf, K.; Rust, M.; Sealey, W.; Skonberg, D.; Souza, E.; Stone, D.; Wilson, R. and Wurtele, E., 2007. Expanding the utilization of sustainable plant products in aquafeeds. Aquac. Res. pp: 551-579.
  32. Gerzhova, A.; Mondor, M.; Benali, M. and Aider, M., 2015. A comparative study between the electro-activation technique & conventional extraction method on the extractability, composition & physicochemical properties of canola protein concentrates and isolates. Food Biosci. Vol. 11, pp: 56-71.
  33. Glencross, B.; Hawkins, W.; Evans, D.; Rutherford, N.; Dods, K.; Maas, R.; McCafferty, P. and Sipsas, S., 2006. Evaluation of the nutritional value of prototype lupin protein concentrates when fed to rainbow trout (Oncorhynchus mykiss). Aquaculture. Vol. 251, pp: 66-77.
  34. Glencross, B.D.; Booth, M. and Allan, G.L., 2007. A feed is only as good as its ingredients-a review of ingredient evaluation strategies for aquaculture feeds: Aquac. Nutr. Vol. 13, pp: 17-34. doi:10.1111/j.1365-2095.2007.00450.x
  35. Grant, G.; Alonso, R.; Edwards, J.E. and Murray, S., 2000. Dietary soya beans & kidney beans stimulate secretion of cholecystokinin and pancreatic digestive enzymes in 400 day-old hooded-lister rats but only soya beans induce growth of the pancreas. Pancreas. Vol. 20, pp: 305-312.
  36. Hardy, R.W., 2010. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. J. Aquac. Res. Vol. 41, pp: 770-776.
  37. Hardy, R.W. and Barrows, F.T., 2002. Diet formulation and manufacture. Fish Nutr. pp: 505-600. doi:10.1016/B978. 012319652-1/50010-0.
  38. Hemre, G.I.; Mommsen, T.P. and Krogodahl, A., 2002. Carbohydrates in fish nutrition: effects on growth, glucose metabolism and hepatic enzymes. Aquac. Nutr. Vol. 8, pp: 175-194. doi:10.1046/j.1365-2095.2002.00200.x
  39. Higgs, D.A., 1995. Chapter II.Use of rapeseed / canola protein products in finfish diets .In : Sessa, D. and Lim, C., (eds). AOAC Monogr. entitled Nutr. Util. Technol. Aquac.
  40. Hisano, H.; Pilecco, J.L. and De, L., 2016. Corn gluten meal in pacu Piaractus mesopotamicus: Aquac. Int. Vol. 24, No. 4, pp: 1049-1060.
  41. Hong, K.J.; Lee, C.H. and Kim, S.W., 2004. Aspergillus oryzae GB-107 fermentation improves nutritional quality offood soybeans and feed soybean meals. J. Med. Food. Vol. 7, pp: 430-435. doi:10.1089/jmf.2004.7.430.
  42. Jahanbakhshi, A.; Imanpoor, M.R.; Taghizadeh, V. and Shabani, A., 2013. Hematological and serum biochemical indices changes induced by replacing fish meal with plant protein (sesame oil cake & corn gluten) in the Great sturgeon (Huso huso). Comp. Clin. Path. Vol. 22, pp: 1087-1092.
  43. Jhansi LakshmiBai, T.C. and Ravindra Kumar Reddy, D., 2016. Comparison of effects of cotton seed meal with fish meal on growth , feed conversion ratio and survival of red bellied Pacu (Piaractus Brachypomus). Int. J. Sci. Environ. Technol. Vol. 5, pp: 1092-1099.
  44. Jiang, T.T.; Feng, L.; Liu, Y.; Jiang, W.D.; Jiang, J. and Li, S.H., 2014. Effects of exogenous xylanase supplementation in plant protein‐enriched diets on growth performance, intestinal enzyme activities and microflora of juvenile Jian carp. Aquac. Nutr. Vol. 20, No. 6, pp: 632-645.
  45. Kaushik, S.J.; Cravedi, J.P.; Lalles, J.P.; Sumpter, J.; Fauconneau, B. and Laroche, M., 1995. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic or antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture. Vol. 133, pp: 257-274.
  46. Kim, D.H. and Austin, B., 2006. Innate immune responses in rainbow trout (Oncorhynchus mykiss) induced by probiotics. Fish & shellfish immunol. Vol. 21, pp: 513-524.
  47. Kim, S.S.; Galaz, G.B.; Pham, M.A.; Jang, J.W.; Oh, D.H.; Yeo, I.K. and Lee, K.J., 2009. Effects of dietary supplementation of a meju , fermented soybean meal , and Aspergillus oryzae for juvenile parrot fish (Oplegnathus fasciatus ). Vol. 22, pp: 849-856.
  48. Kim, S.S.; Pham, M.A.; Kim, K.W.; Son, M.H. and Lee, K.J., 2010. Effects of microbial fermentation of soybean on growth performances, phosphorus availability & antioxidant activity in diets for Juvenile olive flounder (Paralichthys olivaceus). Vol. 19, pp: 1605-1610.
  49. Krogdahl, Å.; Bakke McKellep, A.M. and Baeverfjord, G., 2003. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities and pancreatic response in Atlantic salmon (Salmo salar). Aquac. Nutr. pp: 361-371.
  50. Kumar, V.; Sinha, A.K.; Makkar, H.P.S. and Becker, K., 2010. Dietary roles of phytate and phytase in human nutrition. A review. Food Chem. Vol. 120, pp: 945-959.
  51. Kuz’mina, V.; Shekovtsova, N. and Bolobonina, V., 2010. Activity dynamics of proteinases and glycosidases of fish chyme with exposure in fresh and brackish water. Biol. Bull. Vol. 37, pp: 605-611.
  52. Lazzarotto, V.; MeÂdale, F.; Larroquet. L. and Corraze. G., 2018. Long-term dietary replacement of fishmeal and fish oil in diets for rainbow trout (Oncorhynchus mykiss): Effects on growth,  whole body fatty acids and intestinal and hepatic gene expression. PLoS ONE. Vol. 13, No. 1, pp: e0190730.
  53. Lee, S.M.; Azarm, H.M. and Chang, K.H., 2016. Effects of dietary inclusion of fermented soybean meal on growth, body composition, antioxidant enzyme activity and disease resistance of rockfish. Aquaculture. Vol. 459, pp: 110-116.
  54. Lichon, M.J., 1996. Sample preparation, in: Nollet, L.M.L., (Ed.), Handbook of Food Analysis. Marcel Dekker. New York. pp: 1-19.
  55. Lie, K.K.; Hansen, A.C.; Eroldogan, O.T.; Olsvik, P.A.; Rosenlund, G. and Hemre, G.I., 2011. Expression of genes regulating protein metabolism in Atlantic cod (Gadus morhua L.) was altered when including high diet levels of plant proteins. Aquac. Nutr. Vol. 17, No. 1, pp: 33-43.
  56. Lochmann, R.; Chen, R.; Chu-Koo, F.W.; Camargo, W.N.; Kohler, C.C. and Kasper, C., 2009. Effects of carbohydrate- rich alternative feedstuffs on growth, survival, body composition, hematology, and nonspecific immune response of black pacu, Colossoma macropomum, and red Pacu. J. World Aquacult. Soc. Vol. 40, pp: 33-44.
  57. Lund, I.; Dalsgaard, J.; Rasmussen, H.T.; Holm, J. and Jokumsen, A., 2011. Replacement of fish meal with a matrix of organic plant proteins in organic trout (Oncorhynchus mykiss) feed, and the effects on nutrient utilization and fish performance. Aquaculture. Vol. 321, No. 3, pp: 259-266.
  58. McQuaker, N.R.; Brown, D.F. and Kluckner, P.D., 1979. Digestion of environmental materials for analysis by inductively coupled plasma-atomic emission spectrometry. Anal. Chem. Vol. 51, pp: 1082-1084.
  59. Mente, E.; Karalazos, V.; Karapanagiotidis, I.T. and Pita, C., 2011. Nutrition in organic aquaculture: An inquiry and a discourse. Aquac. Nutr. Vol. 17, pp: 798-817.
  60. Nageswari, P. and Daniel, N., 2015. Dietary Roles of Nucleotides in Aquaculture. Aqua Int. Vol. 12, pp: 51-52.
  61. Narayanan, S., 1982. Method-comparison studies on immunoglobulins. Clin. Chem. Vol. 28, pp: 1528-1531.
  62. Nascimento, A.F.; Maria, A.N.; Pessoa, N.O.; Carvalho, M.A.M. and Viveiros, A.T.M., 2010. Out-of- season sperm cryopreserved in different media of the Amazonian freshwater fish pirapitinga (Piaractus brachypomus). Anim. Reprod. Sci. Vol. 118, pp: 324-329.
  63. Nazari, H.; Salarzadeh, A.; Safari, O. and Yahyavi, M., 2018. Screening of selected feedstuffs by juvenile pacu, Piaractus brachypomus. Aquac. Nutr. Vol. 10. pp: 1111.
  64. Ngo, D.T.; Wade, N.M.; Pirozzi, I. and Glencross, B.D., 2016. Effects of canola meal on growth, feed utilisation, plasma biochemistry, histology of digestive organs and hepatic gene expression of barramundi (Asian seabass: Lates calcarifer). Aquaculture. Vol. 464, pp: 95-105.
  65. Panserat, S.; Hortopan, G.A.; Plagnes-Juan, E.; Kolditz, C.; Lansard, M.; Skiba-Cassy, S.; Esquerré, D.; Geurden, I.; Médale, F.; Kaushik, S. and Corraze, G., 2009. Differential gene expression after total replacement of dietary fish meal and fish oil by plant products in rainbow trout liver. Aquaculture. Vol. 294, pp: 123-131.
  66. Pérez-Jiménez, A.; Guedes, M.J.; Morales, A.E. and Oliva-Teles, A., 2007. Metabolic responses to short starvation and refeeding in (Dicentrarchus labrax). Effect of dietary composition. Aquaculture. Vol. 265, pp: 325-335.
  67. Potter, S.M., 1998. Soy protein and cardiovascular disease: the impact of bioactive components in soy. Nutr. Rev. Vol. 56,pp: 231-235.
  68. Quinsac, A.; Ribaillier, D.; Elfakir, C.; Lafosse, M. and Dreux, M., 1991. A new approach to the study of glucosinolates by isocratic liquid chromatography. Rapid determination of desulfated derivatives of rapeseed glucosinolates. J. A. Off. Anal. Chem. Vol. 74, pp: 932-939.
  69. Racicot, J.G.; Gaudet, M. and Leray, C., 1975. Blood and liver enzymes in rainbow trout with emphasis on their diagnostic use: study of CCl۴ toxicity and a case of Aeromonas infection. J. Fish Biol. Vol. 7, pp: 825-835.
  70. Refstie, S.; Svihus, B.; Shearer, K.D. and Storebakken, T., 1999. Nutrient digestibility in Atlantic salmon and broiler chickens related to viscosity and non-starch polysaccharide content in different soyabean products. Anim. Feed Sci. Technol. Vol. 79, pp: 331-345.
  71. Řehulka, J.; Minařik, B.; Adamec, V. and  Řehulkova, E., 2005. Investigations of physiological and pathological levels of total plasma protein in rainbow trout, Oncorhynchus mykiss. Aquac. Res. Vol. 36, pp: 22-32.
  72. Richard, L.; Surget, A.; Rogolet, V.; Kaushik, S. and Geurden, I., 2011. Availability of essential amino acids, nutrient utilization and growth in juvenile tiger shrimp, Penaeus monodon, following fishmeal replacement by plant protein. Aquaculture. Vol. 322-323, pp: 109-116.
  73. Rolland, M.; Larsen, B.K.; Holm, J.; Dalsgaard, J. and Skov, P.V, 2015. Effect of plant proteins and crystalline amino acid supplementation on postprandial plasma amino acid profiles and metabolic response in rainbow trout. Aquac. Int. Vol. 23, No. 4, pp: 1071-1087.
  74. Rungruangsak-Torrissen, K.; Moss, R.; Andersen, L.; Berg, A. and Waagbo, R., 2006. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon. Fish Physiol. Biochem. Vol. 32, pp: 7-23.
  75. Saedi, M.; Sajjadi, M.; Hosseinzadeh, H. and Emadi, H., 2012. Effect of replacing fish meal by soybean meal in diet of red Pacu (Piaractus brachypomus). J. Mar. Sci. Technol. pp: 47-55.
  76. Safari, O., 2011. Study on the production of canola protein concentrate through different processing methods (physical, chemical and biological) with aim of using in the diet of rainbow trout (Oncorhynchus mykiss). University of Tehran.
  77. Safari, O,; Bagheri Doorbadam, J. and Naserizadeh, M., 2014. Study of plasma sex steroid hormones in female snow trout within a year. J. Vet. Res. Vol. 69, pp: 423-430.
  78. Safari, O.; Naserizadeh, M. and Mohammadi Arani, M., 2016. Digestibility of selected feedstuffs in subadult Caspian great sturgeon, Huso huso using settlement faecal collection and stripping methods. Aquac. Nutr. Vol. 22, pp: 293-303.
  79. Safari, O.; Shahsavani, D.; Paolucci, M. and Mehraban Sang Atash, M., 2014. Screening of selected feedstuffs by sub-adult narrow clawed crayfish, Astacus leptodactylus leptodactylus. Aquaculture. Vol. 420-421, pp: 211-218.
  80. Sarker, M.; Alam, S.; Satoh, S., Kamata, K.; Haga, Y. and Yamamoto, Y., 2012. Supplementation effect (s) of organic acids and/or lipid to plant protein‐based diets on juvenile yellowtail, Seriola quinqueradiata Temminck et Schlegel 1845, growth and, nitrogen and phosphorus excretion. Aquac. Res. Vol. 43, No. 4, pp: 538-545.
  81. Saurabh, S. and Sahoo, P.K., 2008. Lysozyme: An important defence molecule of fish innate immune system. Aquac. Res. Vol. 39, pp: 223-239.
  82. Shahidi, F., 1990. Canola and rapeseed: Production, Chemistry, Nutrition and Processing Technology. Van Nostrand Reinhold. 335 p.
  83. Shi, X.; Chen, F.; Chen, G.H.; Pan, Y.X.; Zhu, X.M.; Liu, X. and Luo, Z., 2017. Fishmeal can be totally replaced by a mixture of rapeseed meal and Chlorella meal in diets for crucian carp (Carassius auratus gibelio). Aquac. Res. doi:10.1111/are.13364
  84. Slawski, H.; Adem, H.; Tressel, R.; Wysujack, K.; Koops, U. and Schulz, C., 2011. Replacement of Fishmeal by Rapeseed Protein Concentrate in Diets for Common Carp (Cyprinus carpio L.). Isr. J. Aquac. Vol. 63.
  85. Snyder, G.S.; Gaylord, T.G., Barrows, F.T.; Overturf, K.; Cain, K.D. and Hill, R.A., 2012. Effects of carnosine supplementation to an all-plant protein diet for rainbow trout (Oncorhynchus mykiss). Aquaculture. Vol. 338, pp: 72-81.
  86. Song, Z.; Li, H.; Wang, J., Li, P.; Sun, Y. and Zhang, L., 2014. Effects of fishmeal replacement with soy protein hydrolysates on growth performance, blood biochemistry, gastrointestinal digestion and muscle composition of juvenile starry flounder. Aquaculture Vol. 426-427, pp: 96-104.
  87. Squires, E., 2003. Manipulation of growth and carcass composition. Appl. Anim. Endocrinol. pp: 66-123.
  88. Suplicy, F.M., 2007. Freshwater fish seed resources in Brazil, in: Bondad-Reantaso, M.G., (Ed.), Assessment of Freshwater Fish Seed Resources for Sustainable. Aquaculture. pp: 129-143.
  89. Taheri Kondor, O.A.; Sajjadi, M.; Sourinejad, I.; Daryaei, A.; Khademi, F. and Mirzadeh, G., 2014. The effect of dietary supplementation of L-carnitine on resistance to temperature and salinity stresses in Sobaity seabream Sparidentex hasta. J. Fish. Vol. 67, pp: 585-597.
  90. Thiessen, D.L.; Maenz, D.D.; Newkirk, R.W.; Classen, H.L. and Drew, M.D., 2004. Replacement of fishmeal by canola protein concentrate in diets fed to rainbow trout (Oncorhynchus mykiss). Aquac. Nutr. Vol. 10, pp: 379-388.
  91. USDA. 2017. Oilseeds:World Markets and Trade. US Department of agriculture. Foreign agricultural service, Washington, DC, USA.
  92. Valente, L.M.; Cabral, E.M.; Sousa, V.; Cunha, L.M. and Fernandes, J.M., 2016. Plant protein blends in diets for Senegalese sole affect skeletal muscle growth, flesh texture and the expression of related genes. Aquaculture. Vol. 453, pp: 77-85.
  93. Waley, K. and North, J., 1997. Haemolytic assays for whole complement activity and individual components. In: (Dodds, A.W. and Sim, R.B., eds.), Complement: A Pract. Approach, Univ. Press. Oxford, Gt. Britain. Vol. 1, pp: 19-47.
  94. Webster, C. and Lim, C., 2002. Nutrient requirements and feeding of finfish for aquaculture.
  95. Welker, T.; Barrows, F.; Overturf, K.; Gaylord, G. and Sealey, W., 2016. Optimizing zinc supplementation levels of rainbow trout fed practical type fishmeal and plant based diets. Aquac. Nutr. Vol. 22, No. 1, pp: 91-108.
  96. Worthington, C.C., 1991. Worthington enzyme manual related biochemical, 3rd edn. Worthingt. Biochem. Corp. Free. NJ pp: 212-215.
  97. Yamamoto, M.; Saleh, F.; Tahir, M.; Ohtsuka, A. and Hayashi, K., 2007. The effect of Koji-feed (fermented distillery by-product) on the growth performance and nutrient metabolizability in broiler. J. Poult. Sci. Vol. 44, pp: 291-296.
  98. Yamamoto, T. and Yonemasu, K., 1999. Multiple molecular forms of serum immunoglobulin M in apatient withWaldenstro¨m’s macroglobulinemia. Clin. Chim. Acta. Vol. 289, pp: 173-176.
  99. Yan, J.; Li, Y.; Liang, X.; Zhang, Y.; Dawood, M.A.O.; Matuli’c, D. and Gao, J., 2017. Effects of dietary protein and lipid levels on growth performance, fatty acid composition and antioxidant-related gene expressions in juvenile loach. Aquac. Res. Vol. 48, No. 10, pp: 5385-5393.
  100. Yang, S.D.; Liu, F.G. and Liou, C.H., 2012. Effects of dietary L-carnitine, plant proteins and lipid levels on growth performance, body composition, blood traits and muscular carnitine status in juvenile silver perch (Bidyanus bidyanus). Aquaculture. Vol. 342, pp: 48-55.
  101. Yigit, N.O. and Olmez, M., 2009. Canola meal as an alternative protein source in diets for fry of tilapia. Isr. J. Aquac. Bamidgeh. Vol. 61, pp: 35-41.
  102. Yokoyama, Y.; Toth, B. and Ktchens, W., 2003. Role of thromboxane in producing portal hypertension following trauma hemorrhage. Am J Physiol, Gastrointest. liver Physiol. pp: 1294-1299.
  103. Zar, J.H., 1999. Biostatistical analysis. Prentice-Hall, Inc. New Jersy, USA.
  104. Zhang, Y.; Øverland, M.; Shearer, K.D.; Sørensen, M.; Mydland, L.T. and Storebakken, T., 2012. Optimizing plant protein combinations in fish meal-free diets for rainbow trout (Oncorhynchus mykiss) by a mixture model. Aquaculture. Vol. 360-361, pp: 25-36.
  105. Zhang, H.; Yi, L.; Sun, R.; Zhou, H.; Xu, W. and Zhang, W., 2016. Effects of dietary citric acid on growth performance, mineral status and intestinal digestive enzyme activities of large yellow croaker fed high plant protein diets. Aquaculture. Vol. 453, pp: 147-153.
  106. Zhou, Q.L.; Habte Tsion, H.M.; Ge, X.; Xie, J.; Ren, M.; Liu, B.; Miao, L. and Pan, L., 2018. Graded replacing fishmeal with canola meal in diets affects growth and target of rapamycin pathway gene expression of juvenile blunt snout bream. Aquac. Nutr. Vol. 24, pp: 300-309.