بررسی تاثیر منابع مختلف سلنیوم بر روی برخی از عناصر معدنی و آنتی اکسیدان‌های خون بره‌های کبوده فارس

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم دامی، واحد داراب، دانشگاه آزاد اسلامی، داراب، ایران

2 گروه علوم دام، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران

10.22034/AEJ.2021.307195.2648

چکیده

سلنیوم یک عنصر کمیاب ضروری برای بسیاری از فرایندهای فیزیولوژیکی، به ویژه برای عملکرد سیستم‌های ایمنی و تولید مثل، متابولیسم هورمون‌های تیروئید و هم چنین دفاع آنتی‌اکسیدانی است. این مطالعه به منظور بررسی منابع مختلف سلنیوم روی برخی از عناصر معدنی و آنتی اکسیدان های خون بره‌های کبوده فارس انجام گرفت. در این آزمایش از تعداد 16 راس بره نژاد کبوده فارس 4 ماهه با متوسط وزن 2±35 کیلوگرم استفاده گردید. در آغاز این پژوهش بره‌های مورد استفاده از ابتدا پلاک‌کوبی، وزن‌شان ثبت و تحت معاینه بالینی قرار گرفتند. تیمارهای مورد آزمایش شامل سلنیت سدیم و نانوسلنیوم به صورت خوراکی به میزان یک دهم میلی‌گرم به ازائ هر کیلوگرم وزن بدن به مدت ده روز، ویتامین ای سلنیوم (به صورت تزریقی به میزان 005/ 0 میلی‌گرم به ازای هر کیلوگرم وزن زنده) و گروه شاهد (فاقد  سلنیوم) بودند. آب و نمک به صورت آزاد در اختیار دام‌ها قرار گرفت.  جیره پایه براساس احتیاج نژادی و خوراک دهی به‌صورت دو بار در روز (ساعات 8:00 صبح و 18:00 غروب) انجام شد. مدت  آزمایش 30 روز و نمونه‌گیری از خون بره‌ها در روزهای شروع آزمایش (صفر)، 10 و 30 روزگی به عمل آمد. غلظت عناصر آهن، مس و روی تحت تاثیر منابع مختلف سلنیوم تفاوت معنی‌داری را نشان داد (0/05>P). به‌طورکلی استفاده از منابع مختلف سلنیوم موجب کاهش غلظت آهن، مس و افزایش غلظت روی پلاسما در دوره های مختلف آزمایش شد. سلنیوم خون بره‌ها در طی آزمایش نیز با یکدیگر اختلاف معنی‌داری نشان داد (0/05>P) و میزان آن در طی آزمایش افزایش یافت. فعالیت آنزیم گلوتاتیون پراکسیداز و سوپراکسیدودیسموتاز نیز تحت تاثیر منابع مختلف سلنیوم افزایش یافت (0/05>P). به‌طور کلی استفاده از منابع مختلف سلنیوم موجب کاهش غلظت آهن و مس سرم در دوره های اول، دوم و سوم گردید و غلظت روی نیز در دوره‌های مختلف آزمایش افزایش معنی‌داری را نشان داد. سلنیوم با افزایش بیان رسپتورهای ترانسفرین در سطح سلول‌های بافت‌ها، ورود ترانسفرین به داخل سلول را به روش اندوسیتوز با واسطه گیرنده افزایش داده و این امر موجب کاهش غلظت آهن سرم می‌گردد. از طرفی کاهش آهن بر ساخت سرولوپلاسمین تاثیر داشته و این پروتئین، وظیفه انتقال مس را بر عهده دارد. تغییرات مس ممکن است یک اثر غیر مستقیم بر غلظت روی سرم داشته باشد. جذب روی درسطح روده توسط مس از طریق افزایش سنتز متالوتیونین، اختلال پیدا می‌کند. استفاده از منابع مختلف سلنیوم سبب تامین مداوم عنصر سلنیوم و به حد مطلوب رسیدن غلظت سلنیوم پلاسما شد. افزایش سطح آنزیم گلوتاتیون پراکسیداز به دلیل، ارتباط مستقیم بین غلظت سلنیوم و فعالیت گلوتاتیون پراکسیداز است. به‌طورکلی استفاده از سلنیوم سبب عملکرد بهینه بره‌ها و سلامتی آن‌ها را بهبود می‌بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation on the Effect of Different Selenium Sources on Some Mineral Elements and Antioxidants in the Blood of Fars kaboodeh Lambs

نویسندگان [English]

  • Ebrahim Talebi 1
  • Aziz Dolatkhah 1
  • Reza Asadi Moghadam 2
1 Department of Anima Sciences, Darab Branch, Islamic Azad University, Darab, Iran
2 Department of Animal Science, Agriculture and Natural Resources Campus, University of Tehran, Karaj, Iran
چکیده [English]

Selenium is an essential trace element for many physiological processes, especially for the functioning of the immune and reproductive systems, the metabolism of thyroid hormones, and antioxidant defense. This study was performed to investigate different sources of selenium on some mineral elements and antioxidants in the blood of Fars kaboodeh lambs. In this experiment, sixteen 4-month-old Fars kaboodeh lambs with an average weight of 35±2 kg were used. At the beginning of this study, the lambs used for plaque were first weighed and subjected to clinical examination. The treatments tested included sodium selenite and nano-selenium orally at the rate of one-tenth of a milligram per kilogram of body weight for ten days, vitamin E selenium (injectable at a rate of 0.005 mg per kilogram of live weight), and the control group (without selenium). Water and salt were provided ad libitum to the animals. The basic diet was performed twice a day (8:00 am and 6:00 pm) based on racial needs and feeding. The duration of the experiment was 30 days and blood sampling of lambs was performed on the days of the experiment (zero), 10 and 30 days. The concentrations of iron, copper and zinc under the influence of different sources of selenium showed a significant difference (P<0.05). In general, the use of different sources of selenium decreased the concentration of iron, copper and increased the concentration of plasma in different periods of the experiment. Blood selenium of lambs during the experiment also showed a significant difference (P<0.05) and its amount increased during the experiment. The activity of glutathione peroxidase and superoxide dismutase also increased under the influence of different sources of selenium (P<0.05). In general, the use of different sources of selenium decreased the concentration of iron and copper in serum in the 1st, 2nd, and 3rd periods and the concentration of zinc in different periods of the experiment showed a significant increase. By raising the expression of transferrin receptors on the surface of tissue cells, selenium enhances the entry of transferrin into the cell by receptor-mediated endocytosis, which reduces the serum iron concentration. On the other hand, iron deficiency affects the production of ceruloplasmin and this protein is responsible for copper transport. Copper changes may have an indirect effect on serum concentrations. The absorption of copper on the intestinal surface is impaired by increasing the synthesis of metallothionein. The use of different sources of selenium caused a continuous supply of selenium and reached the desired level of plasma selenium concentration. The increase in glutathione peroxidase levels is due to a direct correlation between selenium concentration and glutathione peroxidase activity. In general, the use of selenium improves the performance and health of lambs.

کلیدواژه‌ها [English]

  • Selenium
  • Mineral
  • Glutathione peroxidase
  • Superoxide dismutase
  • Fars kaboodeh
  1. Ramírez-Mella, M. and Hernández-Mendo, O., 2010. Nanotechnology on animal production. Tropical and Subtropical Agroecosystems. 12(3): 423-429.
  2. Tahami, Z., Dastar, B., Oskoueian, E. and Hashemi, S.R., 2021. Investigation of the effect of organic and inorganic selenium on the immune system, egg traits and blood parameters in laying hens. Journal of Animal Environment. 13(2): 135-142. DOI: 10.22034/aej.2020.136308. (In Persian)
  3. Schwarz, K. and Foltz, C.M., 1957. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Journal of the American Chemical Society. 79(12): 3292-3293. https://doi.org/10.1021/ja01569a087.
  4. Butler, G.W. and Peterson, P.J., 1961. Aspects of the faecal excretion of selenium by sheep. New Zealand Journal of Agricultural Research. 4(5-6): 484-491. https://doi.org/10.1080/00288233.1961.10431606
  5. Toy, P., Hatfield, S., Bull, R. and Couri, D., 1978. The effects of different levels of selenium administered to rats in drinking water on distribution and glutathione peroxidase. Research communications in chemical pathology and pharmacology. 21(1): 115-131.
  6. Rayman, M.P., 2000. The importance of selenium to human health. The lancet. 356(9225): 233-241. https://doi.org/10.1016/S0140-6736(00)02490-9
  7. Lu, J. and Holmgren, A., 2009. Journal of Biological Chemistry. 284(2): 723-727. https://doi.org/10.1074/jbc.R800045200
  8. Wright, E., 1965. The distribution and excretion of radioselenium in sheep. New Zealand Journal of Agricultural Research. 8(2): 284-291. https://doi.org/10.1080/00288233.1965.10422358
  9. Davis, P.A., McDowell, L.R., Wilkinson, N.S., Buergelt, C.D., Van Alstyne, R., Weldon, R.N., Marshall, T.T. and Matsuda-Fugisaki, E.Y., 2008. Comparative effects of various dietary levels of Seas sodium selenite or Se yeast on blood, wool, and tissue Se concentrations of wether sheep. Small Ruminant Research. 74(1-3): 149-158. https://doi.org/10.1016/j.smallrumres.2007.05.003
  10. Battin, E.E. and Brumaghim, J.L., 2009. Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell biochemistry and biophysics. 55(1): 1-23. https://doi.org/10.1007/s12013-009-9054-7
  11. De Camargo, E.V., dos Anjos Lopes, S.T., Costa, M.M., Paim, F., Barbosa, C.S. and Leal, M.L.R., 2010. Neutrophil oxidative metabolism and haemogram of sheep experimentally infected with Haemonchus contortus and supplemented with selenium and vitamin E. Journal of animal physiology and animal nutrition. 94(5): e1-e6. https://doi.org/10.1111/j.1439-0396.2010.00986.x
  12. Abuelo, A., Alves‐Nores, V., Hernandez, J., Muiño, R., Benedito, J.L. and Castillo, C., 2016. Effect of parenteral antioxidant supplementation during the dry period on postpartum glucose tolerance in dairy cows. Journal of veterinary internal medicine. 30(3): 892-898. https://doi.org/10.1111/jvim.13922
  13. Aaseth, J., Alexander, J., Bjørklund, G., Hestad, K., Dusek, P., Roos, P.M. and Alehagen, U., 2016. Treatment strategies in Alzheimer’s disease: a review with focus on selenium supplementation. Biometals. 29(5): 827-839. https://doi.org/10.1007/s10534-016-9959-8
  14. Peng, F., Guo, X., Li, Z., Li, C., Wang, C., Lv, W., Wang, J., Xiao, F., Kamal, M.A. and Yuan, C., 2016. Antimutagenic effects of selenium-enriched polysaccharides from pyracantha fortuneana through suppression of cytochrome P450 1A subfamily in the mouse liver. Molecules. 21(12): 1731. https://doi.org/10.3390/molecules21121731
  15. Cihalova, K., Chudobova, D., Michalek, P., Moulick, A., Guran, R., Kopel, P., Adam, V. and Kizek, R., 2015. Staphylococcus aureus and MRSA growth and biofilm formation after treatment with antibiotics and SeNPs. International journal of molecular sciences. 16(10): 24656-24672. https://doi.org/10.3390/ijms161024656
  16. Guisbiers, G., Lara, H.H., Mendoza-Cruz, R., Naranjo, G., Vincent, B.A., Peralta, X.G. and Nash, K.L., 2017. Inhibition of Candida albicans biofilm by pure selenium nanoparticles synthesized by pulsed laser ablation in liquids. Nanomedicine: Nanotechnology, Biology and Medicine. 13(3): 1095-1103. https://doi.org/10.1016/j.nano.2016.10.011
  17. Mahmoudvand, H., Harandi, M.F., Shakibaie, M., Aflatoonian, M.R., ZiaAli, N., Makki, M.S. and Jahanbakhsh, S., 2014. Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts. International journal of surgery. 12(5): 399-403. https://doi.org/10.1016/j.ijsu.2014.03.017
  18. Pascual, A. and Aranda, A., 2013. Thyroid hormone receptors, cell growth and differentiation. Biochimica et Biophysica Acta (BBA)-General Subjects. 1830(7): 3908-3916. https://doi.org/10.1016/j.bbagen.2012.03.012
  19. Tórtora-Pérez, J.L., 2010. The importance of selenium and the effects of its deficiency in animal health. Small Ruminant Research. 89(2-3): 185-192. https://doi.org/10.1016/j.smallrumres.2009.12.042
  20. Arthur, J.R., 2001. The glutathione peroxidases. Cellular and Molecular Life Sciences CMLS. 57(13): 1825-1835. https://doi.org/10.1007/PL00000664
  21. Hatfield, D.L., Tsuji, P.A., Carlson, B.A. and Gladyshev, V.N., 2014. Selenium and selenocysteine: roles in cancer, health, and development. Trends in biochemical sciences. 39(3): 112-120. https://doi.org/10.1016/j.tibs.2013.12.007
  22. Mehdi, Y., Hornick, J.L., Istasse, L. and Dufrasne, I., 2013. Selenium in the environment, metabolism and involvement in body functions. Molecules. 18(3): 3292-3311. https://doi.org/10.3390/molecules18033292
  23. Papp, L.V., Lu, J., Holmgren, A. and Khanna, K.K., 2007. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxidants & redox signaling. 9(7): 775-806. https://doi.org/10.1089/ars.2007.1528
  24. Allmang, C. and Krol, A., 2006. Selenoprotein synthesis: UGA does not end the story. Biochimie. 88(11): 1561-1571. https://doi.org/10.1016/j.biochi.2006.04.015
  25. Berry, M.J., Banu, L., Chen, Y., Mandel, S.J., Kieffer, J.D., Harney, J.W. and Larsen, P.R., 1991. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature. 353(6341): 273-276. https://doi.org/10.1038/353273a0
  26. Ahmed, Z., Malhi, M., Soomro, S.A., Gandahi, J.A., Arijo, A., Bhutto, B. and Qureshi, T.A., 2016. Dietary selenium yeast supplementation improved some villi morphological characteristics in duodenum and jejunum of young goats. J Anim Plant Sci. 26(2): 382-387.
  27. Allan, C.B., Lacourciere, G.M. and Stadtman, T.C., 1999. Responsiveness of selenoproteins to dietary selenium. Annual review of nutrition. 19(1): 1-16. https://doi.org/10.1146/annurev.nutr.19.1.1
  28. Combs Jr, G.F. and Combs, S.B., 1986. The role of selenium in nutrition. Academic pres. Inc. New York. 532 p.
  29. Behne, D. and Kyriakopoulos, A., 2001. Mammalian selenium-containing proteins. Annual review of nutrition. 21(1): 453-473. https://doi.org/10.1146/annurev.nutr.21.1.453
  30. Suttle, N.F., 2010. Mineral nutrition of livestock. Cabi.
  31. Mohri, M., Ehsani, A., Norouzian, M.A., Bami, M.H. and Seifi, H.A., 2011. Parenteral selenium and vitamin E supplementation to lambs: hematology, serum biochemistry, performance, and relationship with other trace elements. Biological trace element research. 139(3): 308-316. https://doi.org/10.1007/s12011-010-8659-4
  32. Pappas, A.C. and Zoidis, E., 2012. The role of selenium in chicken physiology: new insights. Chicken: physiology, diseases and farming practices. Nova Science Publishers Inc., New York, NY. 51-69.
  33. Dhillon, K.S. and Dhillon, S.K., 2003. Distribution and management of seleniferous soils. Advances in agronomy. 79(1): 119-184.
  34. Mikkelsen, R.L., Page, A.L. and Bingham, F.T., 1989. Factors affecting selenium accumulation by agricultural crops. Selenium in Agriculture and the Environment. 23: 65-94.
  35. Driscoll, D.M. and Copeland, P.R., 2003. Mechanism and regulation of selenoprotein synthesis. Annual review of nutrition. 23(1): 17-40.
  36. Ruttle, J.L. and Smith, G.S., 1976 Effect of selenium on feedlot gains of lambs. In Journal of Animal Science. 43(1): 333-333. 1111 North Dunlap Ave, Savoy, Il 61874: Amer Soc Animal Science.
  37. National Research Council. 1985. Nutrient requirements of sheep (Vol. 5). National Academies Press.
  38. National Research Council. 2001. Nutrient requirements of dairy cattle: 2001. National Academies Press.
  39. Shi, L., Xun, W., Yue, W., Zhang, C., Ren, Y., Shi, L., Wang, Q., Yang, R. and Lei, F., 2011. Effect of sodium selenite, Se-yeast and nano-elemental selenium on growth performance, Se concentration and antioxidant status in growing male goats. Small Ruminant Research. 96(1): 49-52. https://doi.org/10.1016/j.smallrumres.2010.11.005
  40. Alimohammadi, R. and Aliarabi, H., 2013. Effect of different levels of selenium supplement on performance, blood metabolites and nutrients digestibility in Mehraban feedlot lambs. Iranian Journal of Animal Science Research. 5: 48-55.
  41. Domínguez-Vara, I.A., González-Muñoz, S.S., Pinos-Rodríguez, J.M., Bórquez-Gastelum, J.L., Bárcena-Gama, R., Mendoza-Martínez, G., Zapata, L.E. and Landois-Palencia, L.L., 2009. Effects of feeding selenium-yeast and chromium-yeast to finishing lambs on growth, carcass characteristics, and blood hormones and metabolites. Animal Feed Science and Technology. 152(1-2): 42-49. https://doi.org/10.1016/j.anifeedsci.2009.03.008
  42. Qin, S., Gao, J. and Huang, K., 2007. Effects of different selenium sources on tissue selenium concentrations, blood GSH-Px activities and plasma interleukin levels in finishing lambs. Biological Trace Element Research. 116(1): 91-102. https://doi.org/10.1007/BF02685922
  43. Gunter, S.A., Beck, P.A. and Phillips, J.M., 2003. Effects of supplementary selenium source on the performance and blood measurements in beef cows and their calves. Journal of Animal Science. 81(4): 856-864. https://doi.org/10.2527/2003.814856x
  44. Rowntree, J.E., Hill, G.M., Hawkins, D.R., Link, J.E., Rincker, M.J., Bednar, G.W. and Kreft Jr, R.A., 2004. Effect of Se on selenoprotein activity and thyroid hormone metabolism in beef and dairy cows and calves. Journal of Animal Science. 82(10): 2995-3005. https://doi.org/10.2527/2004.82102995x
  45. Beck, P.A., Wistuba, T.J., Davis, M.E. and Gunter, S.A., 2003. Effect of selenium supplementation of beef cows on immune responses of weaned beef calves. J. Anim. Sci. 81(8).
  46. Alimohamadi, R., Aliarabi, H., Bahari, A. and Dezfoulian, A.H., 2013. Influence of different amounts and sources of selenium supplementation on performance, some blood parameters, and nutrient digestibility in lambs. Biological trace element research. 154(1): 45-54. https://doi.org/10.1007/s12011-013-9698-4
  47. Kojouri, G.A., Jahanabadi, S., Shakibaie, M., Ahadi, A.M. and Shahverdi, A.R., 2012. Effect of selenium supplementation with sodium selenite and selenium nanoparticles on iron homeostasis and transferrin gene expression in sheep: a preliminary study. Research in veterinary science. 93(1): 275-278. https://doi.org/10.1016/j.rvsc.2011.07.029
  48. Pechova, A., Sevcikova, L., Pavlata, L. and Dvorak, R., 2012. The effect of various forms of selenium supplied to pregnant goats on selected blood parameters and on the concentration of Se in urine and blood of kids at the time of weaning. Veterinární Medicína. 57(8). https://doi.org/10.1007/s12011-010-8884-x
  49. Zhang, J., Wang, H., Bao, Y. and Zhang, L., 2004. Nano red elemental selenium has no size effect in the induction of seleno-enzymes in both cultured cells and mice. Life sciences. 75(2): 237-244. https://doi.org/10.1016/j.lfs.2004.02.004
  50. Pechova, A., Misurova, L., Pavlata, L. and Dvorak, R., 2009. The influence of supplementation of different forms of zinc in goats on the zinc concentration in blood plasma and milk. Biological trace element research. 132(1): 112-121. https://doi.org/10.1007/s12011-009-8389-7
  51. Jalilian, M.T., Moeini, M.M. and Karkodi, K., 2012. Effect of selenium and vitamin E supplementation during late pregnancy on colostrum and plasma Se, Cu, Zn and Fe concentrations of fat tail Sanjabi ewes and their lambs. Acta Agriculturae Slovenica. 100(2): 123-129.
  52. Moeini, M.M., Kiani, A., Karami, H. and Mikaeili, E., 2011. The effect of selenium administration on the selenium, copper, iron and zinc status of pregnant heifers and their newborn calves.
  53. Cristaldi, L.A., McDowell, L.R., Buergelt, C.D., Davis, P.A., Wilkinson, N.S. and Martin, F.G., 2005. Tolerance of inorganic selenium in wether sheep. Small Ruminant Research. 56(1-3): 205-213. https://doi.org/10.1016/j.smallrumres.2004.06.001
  54. Aliarabi, H. and Fadayifar, A., 2014. Effect of slow release blouse of zinc, selenium and cobalt on performance, blood metabolites and digestibility of nutrients in male Mehraban lambs. Iranian Journal of Animal Science Research. 7(1): 23-33 (In Persian).
  55. Attia, A.N., Awadalla, S.A., Esmail, E.Y. and Hady, M.M., 1987. Role of some microelements in nutrition of water buffalo and its relation to production. 2. Effect of zinc supplementation. Assiut Veterinary Medical Journal. 18: 91-100.
  56. Abdelrahman, M.M., Al-Rayyan, N.A.M., Awawdeh, F.T. and Alazzeh, A.Y., 2003. The effect of dietary levels of zinc-methionine on the performance of growing Awassi lambs. Pakistan Journal of Biological Sciences. 6: 979-983.
  57. Mandal, G.P., Dass, R.S., Isore, D.P., Garg, A.K. and Ram, G.C., 2007. Effect of zinc supplementation from two sources on growth, nutrient utilization and immune response in male crossbred cattle (Bos indicus×Bos taurus) bulls. Animal Feed Science and Technology. 138(1): 1-12. https://doi.org/10.1016/j.anifeedsci.2006.09.014
  58. Kendall, N.R., Mackenzie, A.M. and Telfer, S.B., 2012. The trace element and humoral immune response of lambs administered a zinc, cobalt and selenium soluble glass bolus. Livestock Science. 148(1-2): 81-86. https://doi.org/10.1016/j.livsci.2012.05.013
  59. Fadayifar, A., Aliarabi, H., Tabatabaei, M.M., Zamani, P., Bahari, A., Malecki, M. and Dezfoulian, A.H., 2012. Improvement in lamb performance on barley based diet supplemented with zinc. Livestock Science. 144(3): 285-289. https://doi.org/10.1016/j.livsci.2011.12.002
  60. Cousins, R.B., Fischer, P.W.F., L'Abbé, M.R., Cockell, K.A. and Gibson, R.S., 1997. Differential mRNA display, competitive polymerase chain reaction and transgenic approaches to investigate zinc-responsive genes in animals and man. In Proceedings of the Ninth International Symposium Trace Elements in Man and Animal (TEMA 9). 849-852.
  61. Miller, W.J., 1969. Absorption, tissue distribution, endogenous excretion, and homeostatic control of zinc in ruminants. The American journal of clinical nutrition. 22(10): 1323-1331. https://doi.org/10.1093/ajcn/22.10.1323
  62. McDowell, L.R., 2000. Vitamin B12. Vitamins in Animal and Human Nutrition. Iowa State Univ. Press, Ames. 523-563.
  63. Kojouri, G.A. and Shirazi, A., 2007. Serum concentrations of Cu, Zn, Fe, Mo and Co in newborn lambs following systemic administration of vitamin E and selenium to the pregnant ewes. Small Ruminant Research. 70(2-3): 136-139. https://doi.org/10.1016/j.smallrumres.2006.02.002
  64. Dameron, C.T. and Harrison, M.D., 1998. Mechanisms for protection against copper toxicity. The American journal of clinical nutrition. 67(5): 1091S-1097S. https://doi.org/10.1093/ajcn/67.5.1091S
  65. Zervas, G., Telfer, S.B., Carlos, G. and Anderson, P., 1988. The effect of soluble-glass boluses containing copper, cobalt and selenium on the blood composition of ewes. Animal Feed Science and Technology. 21(1): 23-29. https://doi.org/10.1016/0377-8401(88)90016-8
  66. Kumar, N., Garg, A.K., Dass, R.S., Chaturvedi, V.K., Mudgal, V. and Varshney, V.P., 2009. Selenium supplementation influences growth performance, antioxidant status and immune response in lambs. Animal Feed Science and Technology. 153(1-2): 77-87. https://doi.org/10.1016/j.anifeedsci.2009.06.007
  67. Ivancic Jr, J. and Weiss, W.P., 2001. Effect of dietary sulfur and selenium concentrations on selenium balance of lactating Holstein cows. Journal of Dairy Science. 84(1): 225-232. https://doi.org/10.3168/jds.S0022-0302(01)74472-4
  68. Trávníček, J., Racek, J., Trefil, L., Rodinová, H., Kroupová, V., Illek, J., Doucha, J. and Písek, L., 2008. Activity of glutathione peroxidase (GSH-Px) in the blood of ewes and their lambs receiving the selenium-enriched unicellular alga Chlorella. Group (number of ewes= 5), 100(E1). E2.
  69. Hefnawy, A.E., Youssef, S., Aguilera, P.V., Rodríguez, C.V. and Pérez, J.L., 2014. The relationship between selenium and T3 in selenium supplemented and nonsupplemented ewes and their lambs. Veterinary Medicine International. https://doi.org/10.1155/2014/105236
  70. Ullrey, D.E., Light, M.R., Brady, P.S., Whetter, P.A., Tilton, J.E., Henneman, H.A. and Magee, W.T., 1978. Selenium supplements in salt for sheep. Journal of Animal Science. 46(6): 1515-1521. https://doi.org/10.2527/jas1978.4661515x
  71. Burk R.F. and Hill K.E. 2009. Selenoprotein P-expreasion, functions, and role in mammal. Biochem Biophys Acta. 1790(11): 1441-1447.
  72. Lacetera, N., Bernabucci, U., Ronchi, B. and Nardone, A., 1999. The effects of injectable sodium selenite on immune function and milk production in Sardinian sheep receiving adequate dietary selenium. Veterinary research. 30(4): 363-370.
  73. Kendall, N.R., Jackson, D.W., Mackenzie, A.M., Illingworth, D.V., Gill, I.M. and Telfer, S.B., 2001. The effect of a zinc, cobalt and selenium soluble glass bolus on the trace element status of extensively grazed sheep over winter. Animal Science. 73(1): 163-169. https://doi.org/10.1017/S135772980005815X
  74. Puls, R., 1988. Mineral levels in animal health. Diagnostic data. Sherpa International.
  75. Tukmechi, A. and Shahraki, R., 2013. The Effect of feeding with Selenium enriched Saccharomyces cerevisiae on the growth and resistant of rainbow trout (Oncorhynchus mykiss) against environmental stresses and Yersinia ruckeri. Journal of Animal Environment. 4(4): 49-58. (In Persian)
  76. Shabani, R., Fakhraei, J., Mansoori Yarahmadi, H. and Seidavi, A., 2020. The effects of various sources of selenium supplements on performance, carcass characteristics, the population of ileum bacteria, blood parameters, liver enzymes, hormonal activities, and antioxidant activities of blood plasma in broiler chickens. Journal of Animal Environment. 12(3): 85-96. (In Persian)
  77. Ghazanfarpoor, R., Talebi, E., Ghasemi, F. and Haghighat Jahormi, M., 2012. The effect of nanoselenium and sodium selenite on blood glutathione peroxidase and superoxide dismutase in quails under heat stress, National conference of non-active defenses in the agricultural sector, Qeshm.
  78. Matés, J.M., Pérez-Gómez, C. and De Castro, I.N., 1999. Antioxidant enzymes and human diseases. Clinical biochemistry. 32(8): 595-603. https://doi.org/10.1016/S0009-9120(99)00075-2
  79. Kucuk, O., Sahin, N., Sahin, K., Gursu, M.F., Gulcu, F., Ozcelik, M. and Issi, M., 2003. Egg production, egg quality, and lipid peroxidation status in laying hens maintained at a low ambient temperature (6 C) and fed a vitamin C and vitamin E-supplemented diet. Veterinární Medicína. 48(12): 33. https://doi.org/10.17221/5747-VETMED