تعیین تفاوت در حساسیت گونه‌های مختلف کرم‌خاکی به سرب با استفاده از سطوح پیش پراکسیداسیون لیپیدی و آنتی اکسیدانی کل

نوع مقاله: محیط زیست جانوری

نویسندگان

1 گروه محیط زیست، دانشکده منابع طبیعی و محیط زیست، دانشگاه ملایر، ملایر، کدپستی: 95863-65719

2 گروه زیست شناسی سلولی و مولکولی، دانشکده علوم پایه، دانشگاه مازندران، بابلسر، کدپستی: 95447-47416

چکیده

کرم‌های خاکی به‌منظور ارزیابی ریسک آلاینده‌های محیطی توسط محققین مختلف به‌صورت گسترده‌ای به‌عنوان شاخص زیستی مورد استفاده قرار گرفته‌اند. از سویی دیگر گونه‌های کرم خاکی موجود در یک منطقه و نیز حساسیت آن‌ها به یک آلاینده خاص متفاوت می‌باشد. از این­رو هدف مطالعه حاضر بررسی اثرات فلز سرب بر ظاهر، توده زیستی، پراکسیداسیون لیپیدی و ظرفیت آنتی ­اکسیدانی کل به­ عنوان نشانگرهای زیستی در گونه‌های Aporrectodea rosea، Aporrectodea caliginosa، Dendrobaena hortensis و Eisenia fetida کرم خاکی به ­منظور تعیین گونه­ ذاتاً حساس­تر به سرب است. برای این منظور، تست سمیت روی کرم‌های خاکی به ­روش تماسی مطابق دستورالعمل 207 سازمان همکاری و توسعه اقتصادی و اندازه‌گیری فعالیت آنتی‌اکسیدان‌های کل و پراکسیداسیون لیپیدی با مالون دی آلدئید به‌ترتیب با روش‌های توان آنتی­ اکسیدانی احیای آهن و تیوباربیوتوریک اسید انجام شدند. نتایج نشان داد کهترتیب شدت بروز علائم ظاهری و فیزیولوژیک مشاهده شده که از جمله آن‌ها می‌توان به کشیده شدن بدن، انقباض وزیکول سمینال، انقباض حلقه‌ها، پارگی کوتیکول و کوتاه شدن بدن اشاره کرد، به ­صورت A. rosea>A. caliginosa>D. hortensis>E. fetida بود. هم ­چنین گونه A. rosea قرار گرفته در معرض تیمارهای مختلف سرب، نسبت به کاهش توده زیستی و سطوح پراکسیداسیون لیپیدی و آنتی ­اکسیدانی کل حساسیت بیش­ تری را نشان داد. بنابراین باتوجه به یافته‌های به­دست آمده می‌توان پیشنهاد نمود که گونه A. rosea کرم خاکی می‌تواند به ­عنوان شاخص زیستی مناسب در مقابل آلودگی خاک به سرب مدنظر قرار گیرد.

کلیدواژه‌ها


  1. Barata, C.; Varo, I.; Navarro, J.C.; Arun, S. and Porte, C., 2005. Antioxidant enzyme activities and lipid peroxidation in the freshwater cladoceran Daphnia magna exposed to redox cycling compounds. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology. Vol. 140, No. 2, pp: 175-186.
  2. Bartsch, H. and Nair, J., 2000. Ultrasensitive and specific detection methods for exocylic DNA adducts: markers for lipid peroxidation and oxidative stress. Toxicology. Vol. 153, No. 1, pp: 105-114.
  3. Benzie, I.F. and Strain, J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry. Vol. 239, No. 1, pp: 70-76.
  4. Bierkens, J.; Klein, G.; Corbisier, P.; Van Den Heuvel, R.; Verschaeve, L.; Weltens, R. and Schoeters, G., 1998. Comparative sensitivity of 20 bioassays for soil quality. Chemosphere. Vol. 37, No. 14, pp: 2935-2947.
  5. Bouché, M.B., 1992. Earthworm species and ecotoxicological studies. In: Greig- Smith, P.W., Becker, H., Edwards, P.J., Heimbach, F. (Eds.), Ecotoxicology of Earthworms. Intercept Press, Andover. pp. 20-35.
  6. Chen, C.; Zhou, Q.; Liu, S.and Xiu, Z., 2011. Acute toxicity, biochemical and gene expression responses of the earthworm Eisenia fetida exposed to polycyclic musks. Chemosphere. Vol. 83, No. 8, pp: 1147-1154.
  7. Csuzdi, C. and Zicsi, A., 2003. Earthworms of Hungary: Annelida: Oligochaeta, Lumbricidae. Hungarian Natural History Museum. 272 p.
  8. Domínguez-Crespo, M.A.; Sánchez-Hernández, Z.E.; Torres-Huerta, A.M.; Negrete, M.D.L.L.X.; Conde Barajas, E. and Flores-Vela, A., 2012. Effect of the heavy metals Cu, Ni, Cd and Zn on the growth and reproduction of epigeic earthworms (E. fetida) during the vermistabilization of municipal sewage sludge. Water, Air & Soil Pollution. Vol. 223, No. 2, pp: 915-931.
  9. Edwards, C.A. and Coulson, J.M., 1992. Choice of earthworm species for laboratory tests. p 36-43. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds). Ecotoxicology of Earthworms. Intercept Ltd, Andover, UK.
  10. Fitzgerald, D.G.; Warner, K.A.; Lanno, R.P. and Dixon, D.G., 1996. Assessing the effects of modifying factors on pentachlorophenol toxicity to earthworms: applications of body residues. Environmental toxicology and chemistry. Vol. 15, No.12, pp: 2299-2304.
  11. Fourie, F.; Reinecke, S.A. and Reinecke, A.J., 2007. The determination of earthworm species sensitivity differences to cadmium genotoxicity using the comet assay. Ecotoxicology and Environmental Safety. Vol. 67, No. 3, pp: 361-368.
  12. Gopal, V.; Clement, T. and Nagarajan, K., 1998. Potential of Megascolex pumilio in biomonitoring environmental pollution. Indian Journal of Environmental Health. Vol. 28, No. 3, pp: 194-199.
  13. Gupta, S.K. and Sundararaman, V., 1990. Biological response of earthworm Pheretima posthuma to inorganic cadmium. Indian journal of experimental biology. New Delhi. Vol. 28, No. 1, pp: 71-73.
  14. ISO, 17512-1. 2008. Soil Quality-Avoidance test for determining the quality of soils and effects of chemicals on behaviour-Part 1: Test with earthworms (Eisenia fetida and Eisenia andrei) Geneva, Switzerland: International Organiza tion for Standardization.
  15. Kalaiselvan, K.; Prince, S.P.M. and Subburam, W.V., 1996. Toxicity of lead to the earthworm Drawida ramnadana (Michaelsen). Pollution Research. Vol. 15, pp:15-18.
  16. Kula, H., 1995. Comparison of laboratory and field testing for the assessment of pesticide side effects on earthworms. Acta Zoologica Fennica. Vol.  196, pp: 338-341.
  17. Lin, D.; Zhou, Q.; Xie, X. and Liu, Y., 2010. Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia fetida). Chemosphere. Vol. 81, No. 10, pp:1328-1333.
  18. Liu, J.; Xiong, K.; Ye, X.; Zhang, J.; Yang, Y. and Ji, L., 2015. Toxicity and bioaccumulation of bromadiolone to earthworm Eisenia fetida. Chemosphere. Vol. 135, pp: 250-256.
  19. Lowe, C.N. and Butt, K.R., 2005. Culture techniques for soil dwelling earthworms: a review. Pedobiologia. Vol. 49, No. 5, pp: 401-413.
  20. Miyazaki, A.; Amano, T.; Saito, H. and Nakano, Y., 2002.Acute toxicity of chlorophenols to earthworms using a simple paper contact method and comparison with toxicities to fresh water organisms. Chemosphere. Vol. 47, pp: 65-69.
  21. Morgan, J.E.; Norey, C.G.; Morgan, A.J. and Kay, J., 1989. A comparison of the cadmium-binding proteins isolated from the posterior alimentary canal of the earthworms Dendrodrilus rubidus and Lumbricus rubellus. Comparative Biochemistry and Physiology Part C: Comparative Pharmacology. Vol. 92, No. 1, pp: 15-21.
  22. Nordberg, J. and Arner, E.S., 2001. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free radical biology and medicine. Vol. 31, No. 11, pp: 1287-1312.
  23. Nursita, A.I.; Singh, B. and Lees, E., 2005. The effects of cadmium, copper, lead, and zinc on the growth and reproduction of Proisotoma minuta Tullberg (Collembola). Ecotoxicology and environmental safety. Vol. 60, No. 3,
    pp: 306-314.
  24. OECD. 1984. Earthworm, Acute Toxicity Tests. OECD Guidelines for the Testing of Chemicals. Vol. 1, pp: 1-9.
  25. OECD. 2004. Earthworm Reproduction Test (Eisenia fetida/andrei). OECD Guideline for Testing Chemicals.
    Vol. 1, pp: 1-18.
  26. Ohkawa, H.; Ohishi, N. and Yagi, K., 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal biochem. Vol. 95, No. 2, pp: 351-358.
  27. Regoli, F.; Gorbi, S.; Fattorini, D.; Tedesco, S.; Notti, A.; Machella, N. and Piva, F., 2006. Use of the land snail Helix aspersa as sentinel organism for monitoring ecotoxicologic effects of urban pollution: an integrated approach. Environmental health perspectives. pp: 63-69.
  28. Roberts, B.L. and Dorough, H.W., 1985. Hazards of chemicals to earthworms. Environmental Toxicology and Chemistry. Vol. 4, No. 3, pp: 307-323.
  29. Roberts, B.L. and Wyman Dorough, H., 1984. Relative toxicities of chemicals to the earthworm Eisenia foetida. Environmental Toxicology and Chemistry. Vol. 3, No. 1, pp: 67-78.
  30. Rozman, K.K. and Klaassen, C.D., 2001. Absorption, distribution and excretion of toxicants. In: Klaassen, K.D. (Ed.), Casarett and Doull’s Toxicology. The Basic Science of Poisons. McGraw-Hill, New York. pp: 107-132.
  31. Shalata, A. and Tal, M., 1998. The effect of salt stress on lipid peroxidation and antioxidants in the leaf of the cultivated tomato and its wild salt‐tolerant relative Lycopersicon pennellii. Physiologia Plantarum. Vol. 104,
    No. 2, pp: 169-174.
  32. Sivakumar, S., 2015. Effects of metals on earthworm life cycles: a review. Environmental monitoring and assessment. Vol. 187, No. 8, pp:1-16.
  33. Sivakumar, S. and Subbhuraam, C.V., 2005. Toxicity of chromium (III) and chromium (VI) to the earthworm Eisenia fetida. Ecotoxicology and environmental safety. Vol. 62, No. 1, pp: 93-98.
  34. Sivakumar, S.; Kavitha, K.; Rejeshwari, S.; Prabha, D. and Subburam, V., 2003. Effect of cadmium and mercury on the survival morphology and burrowing behaviour of the earthworm Lambito Mauritii (Kinberg). Indian Journal of Environmental Protection. Vol. 23, pp: 799-992.
  35. Spurgeon, D.J. and Hopkin, S.P., 1996. Effects of variations of the organic matter content and pH of soils on the availability and toxicity of zinc to the earthworm Eisenia fetida. Pedobiologia. Vol. 40, No.1, pp: 80-96.
  36. Stenersen, J., 1979. Action of pesticides on earthworms.1. Toxicity of cholinesterase- inhibiting insecticides to earthworms as evaluated by laboratory tests. Journal of Pesticide Science. Vol. 10, pp: 66-74.
  37. Stohs, S.J. and Bagchi, D., 1995. Oxidative mechanisms in the toxicity of metal ions. Free radical biology and medicine. Vol. 18, No. 2, pp: 321-336.
  38. Subramaniam, S.; Thangavel, P. and Subburam, V., 1991. Behavioral, morphological and toxic effects of Zn in the earthworm, Lambito mauritii (kinberg) in water and soil media. Indian Biologist. Vol. 24, pp: 1-7.
  39. Sun, Y.; Yin, Y.; Zhang, J.; Yu, H. and Wang, X., 2007. Bioaccumulation and ROS generation in liver of freshwater fish, goldfish Carassius auratus under HC Orange No. 1 exposure. Environmental toxicology. Vol. 22, No. 3, pp: 256-263.
  40. Veerabahu, S.; Prince, S.P.M.W. and Subburam,
    V., 1995.
    Toxicity of cadmium to the earthworm Drawida ramnadana (Michaelsen). Journal of Environmental Pollution. Vol. 2, pp: 55-58.
  41. Wang, Z.; Cui, Z.; Liu, L.; Ma, Q. and Xu, X., 2016. Toxicological and biochemical responses of the earthworm Eisenia fetida exposed to contaminated soil: Effects of arsenic species. Chemosphere. Vol. 154, pp: 161-170.
  42. Xu, X.B.; Shi, Y.J.; Lu, Y.L.; Zheng, X.Q. and Ritchie, R.J., 2015. Growth inhibition and altered gene transcript levels in earthworms (Eisenia fetida) exposed to 2, 2′, 4, 4′-tetrabromodiphenyl ether. Archives of environmental contamination and toxicology. Vol. 69, No. 1, pp: 1-7.
  43. Xue, Y.; Gu, X.; Wang, X.; Sun, C.; Xu, X.; Sun, J. and Zhang, B., 2009. The hydroxyl radical generation and oxidative stress for the earthworm Eisenia fetida exposed to tetrabromobisphenol A. Ecotoxicology. Vol. 18, No. 6,
    pp: 693-699.
  44. Yasmin, S. and D’Souza, D., 2007. Effect of pesticides on the reproductive output of Eisenia fetida. Bulletin of environmental contamination and toxicology. Vol. 79, No. 5, pp: 529-532.
  45. Žaltauskaitė, J. and Sodienė, I., 2014. Effects of cadmium and lead on the life-cycle parameters of juvenile earthworm Eisenia fetida. Ecotoxicology and environmental safety.
    Vol. 103, pp: 9-16.
  46. Zelikoff, J.T.; Wang, W.; Islam, N. and Flescher, E., 1996. Assays of reactive oxygen intermediates and antioxidant enzymes in medaka (Oryzias latipes): potential biomarkers for predicting the effects of environmental pollution. Techniques in Aquatic Toxicology. CRC Press, Boca Raton, Florida. pp: 178-206.
  47. Zhang, W.; Liu, K.; Li, J.; Chen, L. and Lin, K., 2015. Uptake and depuration kinetics of lead (Pb) and biomarker responses in the earthworm Eisenia fetida after simultaneous exposure to decabromodiphenyl ether (BDE209). Ecotoxicology and environmental safety. Vol. 113, pp: 45-51.
  48. Zhang, W.; Song, Y.F.; Sun, T.H.; Song, X.Y.; Zhou, Q.X. and Zheng, S.L., 2007. Effects of phenanthrene and pyrene on cytochrome P450 and antioxidant enzymes of earthworms (Eisenia fetida). Environmental Chemistry. Vol. 26, pp: 202-207 (in Chinese).